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ABSTRACT

This interim report covers research performed from October
1, 1980 through September 30, 1981 on electron-beam excited
plasma turbulence and electromagnetic emission, on prouaqation
of intense electromagnetic radiation in the earth's ionosphere,
on plasma diagnostics, and on experiments to accelerate ions and
excite low frequency turbulence in the laboratory.
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I. Introduction

This interim re)ort describes work perforrid under AFOSP

grant #80-0022 durinc the period October 1, 1980 to Set.',bhor

30, 1981. The subject of research has been the theory oi

"Plasma Wave Turbulence and Particle Heatinq Caused by Electron

Beams, Radiation, and Pinches". The period covered is the third

staqe of a comprehensive research prooram concerned with the non-

linear behavior of plasma subjected to intensely enerqetic sources.

One of the siqnificant developments in plasma physics (.ver

the past decade has been the theoretical and experimental proqrss

made in our understandina of nonlinear plasma wave evolution in

response to external sources: A wide variety of radiation sources
suh s asr , 3,456

such as lasers, miccowaves, 4 and radar, 5 ,6 and of electron

beam sources, such as solar electron streams 7 ,8 and laboratory

beams9 can excito plasma wave instabilities in taroet plasmas.
10

The waves saturate into a turbulent spectrum, and may heat the

o)lasma, accelerate plasma particles, and/or emit their own radi-

ation. Such processes have been linked to inertial 1 an(' ma.net -

ic 12 controlled thermonuclear fusion schemes, radar communiati-w. -
7,8

in the earth's ionosphere, and Type III solar radio bursts.

The phenomena also bear heavily on certain fundamental question?

of plasma turbulence, such as wave collapse in phase space, elec-

tric-field envelope-soliton evolution, 13,14 and the nature of th

so-called "strong turbulence" 13



II. Summary of Accomulishments

In the followinq summary, we include accomnlishoents of

our program from October 1980 to Septemiber 1981. Thc. founda-

tions for this work were laid durina earlic 4 spons.,rship,

under AFOSP #F49620-76-C-0005 from Auust 1976 throuclh Septem-

ber 1979. Reference should be made to the November 1979 final

reporc for this project, as well as the January 1981 interi.m

report coverino the period October 1979 thr-ough September 1980

in order to get a full picture of the underlyinq motivation and

total perspective.

Our research has been divided into three main areas:

Beam-Plasma Interaction

Radiation-Plasma Interaction

Laboratory Research on Ton Beams

We shall summarize recent accompl ishments in each of thes- Ir(' s

separately. The details can be found in the Appendices, which

are ordered as follows: Appendices A-E represent oublished ver-

sions of preprints included in the last interim report; Apuvendices !

F-J are publications of (new) work performed durino the period

covered by this report; Appendices H-M are preprints of submitte(

articles, and Appendix N is a research report.

A. Beam-Plasma Interaction

Our research hascentered upon the nonlinear evolution of

electron-beam excited Lanqmuir waves, and the electromapnotic

emission from such waves. In new extension of previous numer-

ical studie.s in two dimension, we have found that soatial self-

focusinq of Lanqmuir wave packets is invariably preceded by a
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staqie of linear instability. In the case of the v.ek olect ron

streams which oroa(ae throu(oh the solar wind, thiis ]irl(Iar

instability is Stimul Iated scat terina off ions int-J low mromcntu:'.

reqions of phase space (see Apendix F) in the case of the

more intense relativistic electron beams studied in the labor-
15

atory by Benford, et al., the linear instability is modula-

tional instability which causes break-up of beam-resonant wave,

'ackets into smaller packets whose size- is determined by the

wavelength of the fastest-growing unstable mode (see AT ,,endix :)

Spatial collapse follows the stage of linear intabi] it,'. For

the case of weak electron beams, the inteqrated en(erqy in small-

scale-size structures is a small fraction of the total wave

energy, in aoreement with the predictions of self-similar solu-

tions (Appendix B). In work to be reported in detail in the next

interim rep.ort , it is s!own that non-thermal landau damine in

the vicinitv of the beam velocity can lead to a steady state

turbulence in which most of the enerqy resides at scale sizes

longer than the beam-mode wavelength. It is likely that these

long wavelen,'Lh waves ar( rtsonsible for emission near the

plasma frequency (by earametric instability in a hi-hiy homo-
ceneous plasma, and by conversion of density fluctuat io;s in

a plasma with low freguency turbulence present)

We have also explored the foundations of any statistical

theory based on th,, dynamical (Zakharov) equations of beam-

driven ;,]asma turbulence, by studyinq intrinsically chaotic

t),hiv ir)r ot th, s] ut ions to the dynamical equations, as a

_0
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tunction of the beam urow,,-th rate. A:,o-stdloctora 1 research

associate, Dr. D. use1,has- studied the: tr.,isiti(--n to

turbulence under assumed conditions of adiabatic ionl.S, -lrld

with truncation to a few !Your icr modes. 1%'ith a beam mode,

aind two (deocucilrate ) moain la-t icrially uinstable modes , strange

aittractors and] limit cylswere obsetr :ed in phase space-

(Appoendix 11) .A program, of inereasinci the number of modes

is now underway.

in further numerical work perfori-edo~ by anothier p-ost-

doctoral research associate, Dr. B. Hafizi, recurrent bu-

havior '..as obser'e- d in nonlinear dyvnamical systemrs Such as

those Jescribed by the cubic Soh roed inoe r and Kortweq do0-

V1ries eq -ua ion s (Arpendlix d) In APc oe-nu ces K adL,

mdilat iena i nterct i on f- non I i no .ra ye v(s was model cd

u5 n, q thr. ,ee- , f iv- sen- n in, an d si xt y-fou-w e

t ru nca t ions of the nnn inear sch rood incie r equa tion . A

(let a iled diesc r ipt ion wais civon oF the phase space for the

t h ree-wa ve syst em, and cornea red to thatl f for thle f j ve -P, le

s,.stem analytically. It was shown como)utat ionally that trio

recurrence time for all thle truncations was almost the same,

and that the distribution of energy over the modes rapidly,

reachcod an asymptotic form as the number of modes was increase,!.

In Appendix M, single ion trajectories in an axis-svmmetric

space-charqe wave on an electron beam were studied. 'rhe beam

was assumed to muove parallel to a strong uniform magqnetic-

field. It was found that wave amplitude's too Small- to trar,



be m eb'ct rons we rea 1-1 too sina 1I e sq C 50 cr St och. a i e

moton f a io mi ca lvc-a:oe i~n the? wave, an(! thu(-

ion remains troo

11 Radjatijon-P Isma -I ntto 1tc-t i on

Append ix I is a ropr int 0f a- new -h c'ore tical (,11o o

modification o4f the ooshr b': P11-' radar. For parameters

c hara ct or iz in q te Pla, 1 11t t evi Ie, 2 (- orado (I inno sphe r i cne at i n

facility, the lip radaI-r uxcites I.anqmuir waves; at its exact

r flection -oint by the so-cal lo(l osc-Il atinc; twr-strtearn

1ns t abilI i t %-h5 su.seqont evolut ion of this instahil it,..

s " Stud ccI nu:.Ieri calIv', and found to) iny lye spat ialI sell--

focusi l(u and coll apse of laInqmisiiwv pces >' rsn

are mde wi:jth cornn

Otir ucoer Con thurmial se -fct;ii f 11 aa n

microwave b.2ams in the ionosphcre has been published and is

includecd as Aouendix C.

C. Lab-oraltory he search on Ton Reams and Acce I era tion

- .A tcrn

TheC coal -1 the on-. i no o i s to deve 1o- an(!

* Qnethe I f fiL incy with w.hich I reaml itude wave,(s

in plasmas can accelerate ions. Two general directions--

were ident ified at the outset. - irst, the accole rat ion

of ions in segments by means of ion-acoustic waves, in!

usimaorict ized as well as macinetized plasma. Here the ion



I ii end s u w' i t I I i t -; 11 ,1~l VV n 11 t U11 I- t t Iq I; h. (I i

)ro prena t ' on ot th!e V.'o'o , wh ic! i -- li ma (Ine t i z I ~i sr.a s

-- ,,) ara 1 I el to t he Tna ;not i c fije I,.. S-cord , the acce In rat ion

j7 ions across St 1eel aqee ic f i C1 CIS, 1)., be-am-s of cro-0f.

tiel Sstabi lit iCS h 'lis tot allv ne.;. t.'rOuo(ss has eunda-

me nt a 1 con seq ue nces fr imr'ortjinco to oth Yr 050C)(Cts of 1s:

physics such as jonnsrtheri c particle transport, and isotee

i) Instrumentation Development -Ind Testinq

a) To stidv! ti no acceleration of ions by i can-acoustC

-aves in eInmaet zeK lasria, a siurraco-macnetic s'iutr

,c)! f i so Iasie -vi co c sassemibled0 and tc ( (I K Th aS

con F i,1era ti in W(V iOWru 1) co-nsists o:' a oas d ischar.e- tes ide'

-1iare::t a - 1 'b if Y~ o I 4 -11 1 licm tier aind 30 cm 1 ens tl

-urrounded -- i -ill sd by -ermanent maonets with about I kYe

field strenqth. in this chiamber, it proved rnossible to onerate

1- Dlasma at a backe-roend .roessure of 10- Torr, more than one.

o~rde--r of 7-aqnituAi. below that of :-;rev ious studies. As a result,

charco-exchanqe, cecradia ti oY of ion waves , which liim-ited the am-

plitude of jon-iccelcratiro wavos in nrevious experiments, i-s

avoided. Fiquire 2 shows ton-acoustic shocks (i.e.*, full\,y

steepened ion-acoustic waves) propanqat inc in this pl asma.

As seen, the waves are not at all deqracled in ampl itude.

in; contrast, similar waves at the hiqher pressures riegrade

by an order of maqnitude-. in conclusion, we have established

that the surf ace-maqnet ic structure dlevice ourelate-s as; expectedl.



Hershkowt i t 0: 1'e niv%,eI-;i t \ :w~ut t -

,ei ear 1980-1 18 1 %,it-h ea-r ciroup) , , cuirr-ntly a I ir,.: t i I':

factor in the exci tat i on o, s trono, io )l blO~h seqrnen t I;. t r8 .-III

the d i stances f rom cont ro I arid s to -wc 1 I s It re- I imi t'd , and tlhe

stronq magnetic 00111 moment fie'ld Occunv)% a11 ia]~*rc e

of these distances, calCulLations show that the rclat ively l<'

enerqvy beams we can tcxc ito end uip in curved rather th-an tri:'-

lne trajectories. To avoid! com)l icat ion. resul tinq frn, thIes(-

of fOCt.S, J doub] inq of tht- chamber dimensions is umr cu..;

de rat ion We have d Si qned and reque stedi independent su:.;' int

fur the construct ion of a mat inq chamber of equal volume.

b ) To miiiethe scattor-inq of ion beam soomrrvn#

o i f - ax is leoi- a c ouis t ic wave s - -o ne o f th 1 )r 1on 11 C i T t i n) tao

t rs in ion bc,m!, ciene rat ion -w have puit toethe'- an c: n

tal con fiqur-ation involvi -,a a st rono rnaqnetic field. Heethe

unstable suectrum is narrower, and can be cxi'cctcd to have a

corr-seend inc ly ireduced of foct )n the ion bceam. T'hi S (Ic.:~

a pl asma col umaIIII rte by a i CrowVIN1e bre cik-down of a n ob ) 1

isin Sid cl1 Sc) I enei dI I mati et ic f iL, I d , was cen tr i buted! by

Bu I I ~a bo ra tor-)ies . I t wa S a SSemnbIed an1-1d t eSt ed(I, and1 fl

inst rumen ted -with met or i. zed ax ia 1 and radial Lanqiiu iir-r '~i

)ptical MQocLuremnents have been de lavedU, pend inq re sol at ion

a rajor technical probleom: the presence of parasite rad io(

noise fromr~ an as-yet undetermined souirce.
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Preliminary measurements of wave excitat ion re v( ii 0;,it

larqe-amplitude waves launched in this device are indr-(e f

of degradation by off-axis ion-acoustic turbulence. An in-

teresting new observation has emercled: it appears that s(,ii

coupling from the on-axis ion-acoustic qav. to cross- ie.I

ion-cyclotron modes is occurring. We are studyino this inter-

action theoretically.

ii) Cross-Field Ion Acceleration in Maqnetized Plasma;

As indicated in the proposal for this contract period, a

principal new development of our work is the observation that

ion beam segments can be driven across strong maqnetic fields

by electrostatic ion-cyclotron waves (EICW) . We intended to

quantify the process by measurinq the relationship between

beam speed, magnetic field and beam radius. We have success-

fully carried out these studies, usinq the O-machine faciltiv

at the University of California, Irvine, and have obtained a

firm model for the underlyin<I physical process. To summarize,

the radial electric field component of EICW imparts radial

momentum to ions, which end up in Tarqje-diameter farmnr orbits

convolved around the source reqion. The envelope of tho ion

circulation adds up to an aximuthal ion beam. Ion bunchino

occurs at the apoqee of the orbits, as in maqnetron motion,

leading to the formation of beam seqments.

A full report, included here as Appendix J has been ,-ubLish-d

as a Physical Review Letter.

Based on this understandina, further technolooical develor-

ments are indicated. First, the process itself baf-sioally altert-
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cur picture of transport processes in unstable plasmas, incluriine

the ionosphere. Specifically, the lonc-range ion transport de-

monstrated here indicates that multi-staae ion motion can occur,

with scale lenoths totally unrelated to density or temoerature

gradients, as in ordinary diffusion. Secondly, isotope separaticr

processes now under development may be able to utilize our result-

to enhance spatial separation of particles with differinq mass

(for reference, see Appendix J).
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Breakup and reconstitution of Langmuir wave packets CU 1040

T. Tajima. Martin V. Goldman." J. N. Leboeuf. and J. M. Dawson

Phtics De~parten. nti i,r t~ Caifrnia, I as .4lI,(ei; Californi~a Wk)Z4
ilitece%ed 25' Jsmiaro 1490. A~crpird 17 Sepitember lY0i

Recur,%e heha~ior has tieen ohwcrvcd in At l~o-dmensitinaI etecitostic particle lumulatioto a coherenit
intc angmuirg in, c pa.krt The ,emurs-, nia he a%silcaaed with the fact tliat the plasma freq~uency has &

SPOI11 ia sriai,,n in the dcn~tty depteuwan cicated b) the ponderumoive force

The behavior if il tensev 1.angnIui I- %iaves, nV. .I vu-, gins to emerge. Figure 1 .c) at I 70.o sht .. S t hixtI
niAn~ possible jrcebSVSe Solitons.' WAavet piack( t Col- process of reconstitution of the subpacket tw.i uem-
Lp~sv ,- cascading.' .tiniulat ed scAttering. ni l:!i(e.t ct~inllted and the wa~ve pamcket Proile IS ('I .,,e tri It,
L~andaiu dampini'..c xpiosive in,tailit iis. i ii, duik- tine at ,0, althoutjh At a somewhat slufteo p tit .
tion~al istabi litivs, air o:.l v a fuw%. C .!.(tritt n be- Albo, ii k' space we bee that the energy has _cll~tt i
tween somne of ttie,.e effects is, oil'i (u!t hloinirimi to be brack to Around k k,, in the It space. When we madt
studied. Fffect s seen ill A twao-dii cisi onal e-lect costatic 256, tlie packet fi rst liropagi-Ac forw.-, rd, tticr bat,
part.(It simulation includig IOn arId elect' 'it LilnaniicS vard, in~d beci:,.- rrany suhpaickets, it vrtll

Are reported here; Ani initial wave paicket Uiivltgoes back to the origini.1 shape at the same place in ,tv-ut
virtually coniplete reconstituti on followi ng its Iiialii same lttlne. The size of the plasnia does r' I t ipp-i r I
I reak-up. be a factor in the results. The d(itf deI,:e s-i( r .

Use is miade of if standaird finite-sizedrtil oe socmiateir with the packet be., ame shalloa~er ret -,

I he Initial condition consists of A I anrinir wave, packet tirne elapsed. Although Fermi tf iH.' f un' :rihr!
recursin in a computer simulation of the %ir"tIj I

.which has .t Gaiussian intensity profile in wavesiinirtcr Inrliersrn in.todcds;g wt r

sake wit. Thrae t~nurwaves k re turnejid o inwit an orkh a i fluid or plasma physics dealing withti oc r
.ik, -- ak, TheLangnui waes re trnk-d n i An ive pirocess until the recent work of You:;. - t '. t

1i1LU11Y iall iciorlii uniniagnietized plasnia over thI( time lin- Solved A model nonlincar Schr6dinger in.l. ri
terval I - 0 to / ~.The -.aeb hrave approm~ia)te~y dimension, numerically.
constant energy after the initial transients subside.
T,6pical ip runeters in our studh are; nuniber if lec - T,, dotertnine the ph' ~sic- il process ice-pim sile foir
tr'ns (ions) .\,)3276b * numbher !, g ridis in thre k i ) wave picket recursiori'we ha% e made runr' with sev'- r,il

,tiir'ct ol .'. 128 (L 32) in this dioubly ic ri oditr Sys_ differeint wave packet energy densities. Figut 2 st,
tent. electron errn cthi~v hngl-th I (t)1-% IA; the recursion time vs the average wave packet eni ri,.

121- 128I !in thc dircction); Alv , 27 32 A, the densitY. All the cases shown in Fig. 2 produced ri. %i-
ia:is raio It m - 5. tnd pim rtiile size I, 1 -1 where Sion. All parameters except for the packet encrgy d,!1

A is the grid sp-icint. in butilt Ihe And tdirctiis. In sity .iie fixed at the same values as for the L.i C W- O.,.
such a system, the electron crllis~on frequency is 5 With 14' ranging from 0.25 to 0.75, the recursion time
, 10-' .,And the ele'r in Litai darinpiing decrement ~, was found to be approximately inversely proportiiai
for tile 4, mode is 3 - 10--x Tire plasma is therefore to the wave energy density W -is shown in Fig. 2. There
fairl) dissipattoirkasb over the period o Of ;' were only minor differences it) the wav- packet vm:

Figue 1sh(ws treesn~pshos o eqi-eletlV on- tion during the various recursions.

tours of the elct rostatic wave energy detrsitv for A The observed behavior of 7, as a function of 14' is
cise wth the minii wave Aimiplitude for (htc I - i- mode monsistenit with the theoretical observations made liv
')f Lm) , h, -0.6 And the averare wave etrergv W Kaw / 1ma." who studied the effect of fixed, spatialli,

E-v 2-,i7. 0.5 Over tit( period of I 5 ,100) P'. periodic' ion density fluctuations on Lanigmuir wave t.v,
Here, the angular brackets denote spatial averaging. lutions. The break-up and recursion of an original
The peak of the wave packet is located at %=64A~ atl I/ 0. Langntuir plane wave is due to the density dependenic
It travels in the positive kdirectiotn with tire I' roup v - (if the plasma frequency, which causes the o~scillatinn
locity ir, r0.6& ', until / lOw-t. Linear theory predicts in differenit spatial regions of the plasma tio go in and
v, 0.4. Ftgure 1(b) illustrates a slightly later out of phase with each other. In Fourier space the
stagel£- 20-'. The coherent wave paicket his broken in- wave vectors k, of the ion density fluctuation mix in
tj miany seemingly random subpackets ill liver thie with k_, producing sidebands at kilt kit. The original
space. The break-up occurs not only in thre tdirection, mode At k. beconmes smaller in amplitude at first. hut
but Also in the % direction. The bethavitr if the wave then returns at the time when the Bessel function, IF
intensity itt wave vector spacc (nut shown here) indi- has its next eidremum. This gives an approximate re -
rates that thle peak of the wave energi it hs shifted front cursion time of
4, I., to roughly I. zAv, at i 20...;. The' assemblage of
subpackets continues to change ith strticture until /.w~

-5,-.when A -,ornwhat mmorrcmi;.iniztau structure be- 15ol'I .,'i
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where 6'w,,, in the maximum of the density ripple. +- I

In our problem, the density perturbation is self-con-
sistently generated by the ponderomotive force of the
LAngnauir wave packet. If the ions are roughly adiaba- 03
tic, then balancing the plasma pressure against the
ponderomotive force gives the relation between the den- 02
sity perturbation and the Langmuir field: 6n 02/n

-W14. This predicts a scaling

T, = 3111Y, (2) [
which shows good agreement with the restilts of simu-
lation, as given in Fig. 2. [Also, the numerically ub- .1 2 3 .4 5 C
tained 6n,... measurements were in good aigreemient with
Eq. (1).1 The argument in Ref. 8 predicts a temporally
periodic migration to both higher and lower wavenum- FIG. 2. Inverse of the wave packet recursI-mnU!,:
bers in the Fourier-space evolution of the packet. We mallzed wave-energy density IV. obtained byAv
do not observe the generation of higher Fourier modes.
Their absence is probably due to Landau damping, so we
see only oscillation in the direction of lower wavenurn- to our numerical studies. Thy ragaraa h.:
bers and back, recurrence can be expected in one-dimer~,;;

Sinc th sumisionof his anucrit w hae fund phenomena describable by a cubic Schridinw't
Sin ce theoretmicalo ofsths whiuchil wpe heavfond and has pointed out'0 that, in two dimension-. Fu~h

somerecnt heoetial esuls wichappar eleant tems will either collapse or recur. The w v, c
we have studied should be roughly adibaiu,
fore be describable by a simple cubic ScLrC&>'nf!
tion" to the extent that damping is negligib!p.
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Harmonic emission from adiabatically collapsing Langmuir
solitons

B. Hafizi and Martin V. Goldman

Department of Astro-Geophysics, University of Colorado, Boulder, Colorado 80309
(Received 19 May 1980; accepted 17 September 1980)

Numeical studies of radiation at 2w, from a Langmuir envelope collapsing adiabatically in three dimensions
show that the emissivity is higher than expected. A volume emissivity obtained from an approximate densjt
of collapsing packets leads to favorable comparisons with measurements of type-Ill solar radio bursts.

I. INTRODUCTION Owing to subtle stationary phase effects, this can occur
that a type-II solar radio burst is for packets whose width Ak is still smaller than w, I,.

It i nowbelivedWith reasonable choices for the number density of
associated with an electron beam launched into the

solar wind during a solar flare, leading to electro- collapsing wave plackets, we find levels of emission

magnetic emission at the fundamental and harmonics consistent with the experimental estimate' for the

of the local plasma frequency. Gurnett and Anderson' volume emissivity.

have measured the volume emissivity of harmonic II. EMISSIVITY OF A LANGMUIR WAVE PACKET
emission at ' a.u.

Recently. Goldman et alt.2 proposed a model for the The emissivity is given by

emission based on the following model: An energetic 1P cr 'im dt ExB
beam of electrons launched into the solar wind excites I Q r- ,7 f rI
Langmuir waves. Computations' indicate that a where c is the speed of light. E(B) is the electric
Langmuir wavE packet grows up to a point where the (magnetic) field, and r is the distance between the pint
spatially-averaged energy density W (normalized to the of observation (where EXB is evaluated) and the origin
thermal energy) in the packet exceeds the threshold. In terms of the current, J,, at twice the Ilucal)
lWh ' for direct collapse." The collapse time is a f u te emissivitv is.e splasmia frequency P h mssvt s

infinite at threshold and decreases rapidly as W
increases above W, h. It is found that, typically, a packet dP f 1 ?.s" " ~ ~ - lira J-( ,~ls "

continues to grow in strength up to about twice the dQ 47c2  T J -, I.l i 1
threshold energy density before there is noticeable where f'is the unit vector directed to ward the point olf
evidence of spatial collapse (and broadening in wave observation. ic is the frequencY varitble in the temporal
vector space), Once the packet becomes broad enough Fourier transform of the current. h I - . )')
in k space. it should be kineniaticaily possible to and ) is the angle between J (Kr. ) and i'. i.e..

couple two Langmuir waves into a photon at twice the

local plasma frequency. sin'=jj, , (K .,c)X t:.

The physics of Langmuir collapse is described by We now make use of Zakharov' s fundamental simpli-
the Zakharov equations.' The general solution of these fication' by expressing the current as a slowlN varying_
equations is unknown, however, it is known that they envelope j. and a rapidly oscill.iting phase:

possess certain invariants. '-' It is also known .7, w, J ' exp(-tw,, ) -c.c.,
that in some cases the solutions approach a self-similar -P
form over a region of space. There are two distinct where w,, is the photon frequency. The emissixity can
stages of early collapse, the subsonic or 'rliabatic stage then be expressed as'
(described by a cubic Schr-idinger equatio ,), and the dP A', _ 1 (T(

supersonic stage. In the subsonic stage, the ions dSi l * rI d J-- t (2)J\

respond to the ponderomotive force adiabatically, while, ,

in the supersonic stage, ion inertia plays an important where Eq. (1) has bee simplified ty taking an "average"
role. angle 19,, wavenumber R,, and frequency ., out of the

In Ref. 2, using the plasmon number invariant, an integral, where
upper bound, and using a supersonic self-similar K, =[ O'0-)I C (3)
solution, a much lower estimate of the emissivity of a
bunch of collapsing packets was obtained. It was argued This procedure should be valid as hmg as the direction
that most of the harmonic emission would occur in the of J, (K, ,) does not vary significantlY osci salues 'f

supersonic stage. the trotegrand in Eq. (1) for Ahich J, is large.

In the present work, we examine the adiabatic stage III. DYNAMICS OF A LANGMUIR WAVE PACKET
numerically. We find that an adiabatically collapsing
wave packet can lead to emission in the subsonic stage We describe the nonlinear A,,ave packet hy a Schrj'dinger
which is significantly higher than was thought possible. equation with cubic nunlinearity
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(i 3T ,' 1 addition, conditions were found for the adiabatic apprux-
-'-7,e$ +-~---=-El 0 iniation. These can be expressed as

where V'- 8!'r'; T- ),'.+) T1 ; T*(71j) is the electron 14,, , 'A.
(ion) temperature, with >(),) being the associated In the Appendix, we shall consider the validity (if these
adiabaticity index: Pi, e are the mass and charge of
the electron, respectively: E is the envelope of the qh ee s c
electric field E: ainIn terms of 0, the current density j2. caa be written

E(r', t) =2E(r", t)exp(-iw/)+ c.c. as (see Eq. (33) of Ref. 21;

Under the following substitutions:_ t 3 _8wX 2-

E-(321rnT)' E, t-.wt, r'-v' 3Xr', (4) = - K,,

where n is the background number density and D =(T./ × -- exp(-ik • Koi)
41rne 2)112 is the Debye length, the dimensionless form \2 ioi z. )
of Schr~dinger's equation is obtained: X dr P2() exp[-i(Kor - 2k ) rl

(ir+- V12 + 1E1 2)E=0 (5) X f

We note that the use of the Schr6dinger equation is valid The angular part of the integral can easily be evaluated,
only in the subsonic stage, where the ions are adiabatic.'- leading to
In the Appendix, this is justified for the time scale over/ .6TwA '
which we calculate the emissivity. t 1 p( oLr tA-

-

" -\e(19 - 84 Y3 5)/

The electrostatic field envelope E can be written as
x r62sin(SY)dr ,(9)E(r, t) = -Vtia.(r, t) exp(ik0 r/ko) f. (6)

Here, k, = lia/ rb is the wave vector of the most un- where
stable beam mode. At f=0, 4(r, t=0) is a real func- S IK0i - 2k, €3(v,,/)(19 - 8, A)"',
tion which is localized around r=0 and has spatial

widths parallel and perpendicular to k.. These initial r " r. (10)
widths are 2set by the k-space contours of the beam The quantity S is the momentum mismatch between the
instability.) Roughly, {7,d4V=',.l anid VI ~ d~. .I harmonic photon and two plasmons; also, t',h is the
where Ak,, and Ak. are the parallel and perpendicular electron thermal speed. Use has been made of the fact
widths associated2 with the beam instability; initially, that for emission at twice the local plasma frequency,

Eq. (3) gives K 0 = 3(e,./c); moreover, Iko = 2(,-,l/c).
Our central approximation will be to take to be [Note that in Eq. (10) the dimensionless forms of Kt

spherically symmetric at the initial and later times, and k0 appear in accord with Eq. (4). 1
so there will only be a symmetric width measure which Substituting Eq. (9) for the modulus square of the 2.v
changes with time. Throughout the calculation, the in- current into Eq. (2), we have the following expression
equality d IA k, I 4 i will be satisfied, so that the wave for the emissivity of a single wave packet
packet will remain relatively narrow in k space. This

enables us to write Eq. (6) approximately as dP . . v'6(6T)2K0 .0 /L ) 1
d So =rW o(19-8v_3Ac' J1" limE(r',t) zko(r',t)exp(iko.r'). (6') dYi n 1 c / m.

This field still has the phase factor exp(ik.r^) and is X f dt r:drrosin(Sr) . (11)
thus not spherically symmetric. However, the mom- r
entum k0 can be transformed away by the following
gauge-frame transformation7; IV. NUMERICS AND SCALING

,(r', t = 6( , 0exp(-i0/2), Equation (8) is solved in the Hilbert space of 0 by an

r = r' - k0l. (7) implicit finite difference method in spherical geometry.
The following invariants can easily be derived from

Using Eqs. (5)-(7), we find that the spherically sym- this equationG'9:
metric scalar j(r,t) satisfies

(i85 + 2'+ 01)o=0. (8) 1=, I l I rdr, 1," (8,0I- 12 ')dr, (12)

We have studied this equation in Ref. 7. It was shown where 1, is proportional to the boson number and 1, is
there that the condition for the electrostatic approxi- proportional to the Hamiltonian. The accuracy and
mation isprprinltthHaitna.Teacayad

stability of the numerical scheme is checked by the
(semi) invariance of the discrete forms of the func-

which is well satisfied for most times of interest. This tionals 11 and 1, on the Hilbert space.

differs substantially from the so-called head-on approx- The computations are started by choosing a Gaussian
imation often made' to calculate harmonic emission. In for the initial potential
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0(r, t = 0) = exp(-2rI/12). (13) 2

For the particular mesh size chosen, we take I = 5.66.
From Eq. (9b) of Ref. 2, the parallel half-width 0
of the packet is found to be

. Ark= /r,'~?, -2

[Eq. (9b), Ref. 21, where r. is the beam speed and -4
-It,b is the spread in this speed. From the values quoted
in Ref. 2 we find

k k %v ku t_ x 10 ,t>
k, 1/A, " tb ko -

Note that the Schr6dinger equation (5) is invariant under a
stretching of r' by a factor A, provided the time t is -,o
stretched by A 2 , and E is reduced by A. With A = 300,
our choice of I =5.66 can be made to correspond to the 412
above value of lk,,. We therefore arrive at the fol-

lowing approximate scaling from type-III values (sub-
scri t "ill") to computational values (subscript "c"): - 0 .. . .0 2 4 .6 8 1.0 7 2

(o ,, = (300)'( ),,
(t),,, = (300)'(tO ,

(r)ill = 300(r),c • (14)

We choose (00). to be 1.18, corresponding to an average
energy density (W)c, at twice the threshold value. 2,7
Using the scaling of Eq. (14), this leads to a value for
(IV)", 10-4

, 
which is in agreement with the value used

in Ref. 2. Further, from Eqs. (4), (10), and (14) we
find that

(S) 0 =300(S)... =300V 3(th./c)(19 - 8v'3g /)'/ (15) .14

With (t'th/c) -4.5 x10 " in Eq. (15), S is sufficiently
large for all d, so that the spatial integral in Eq. (11)
is seen to be practically zero for an initial b of the form
of Eq. (13). Thus, the scaling implied by Aik,, [Eq. (9b) , 13

of Ref. 21 leads to a negligible emissivity initially. The
interesting feature that emerges from our computations
is that the modulus and phase of 6 change sufficiently
in the subsonic regime to enable substantial emission .2

to occur.

V. RESULTS AND DISCUSSION

Figures 1 (a) and (b) show the time development of the 'C
emissivity of a single packet, i.e., the expression given 1- - - - -

in Eq. (11) before performing a time average. The 1 3 1 304 308 512 1 i16 , 13.4

emission grows in an approximately exponential manner

for most of the time development of the packet, reaching FIG. 1. Tempral development of emiss iit\ Ir0m a collapsin

a maximum and decreasing thereafter until the collapse wa:ve packet. Note the logarithinic scal, in (a) lor the ca rI.
point. in this calculation 0, has been taken as 450 [see stage, and the linear scalc in 0)l, close to the collapse time.

The scalt on the tinic aa is in an h the eoinlputationa ;l sal-
the remark following Eq. (2)1 and p - I,- *" has been ing (see Eqs. (1.1) in tvx, Collapse tinie i 1.32"1,.
taken as v 3 2 (,, making an angle of 30' with -).

We note that the emissivity climbs from an initially Let us now write ,. ,exp(li) , where .I(r) is a real
negligible value to a peak many orders of magnitude modulus, and Y(v) a real phase, and both are spher-
larger, and then begins to decay. The peak occurs at ically symmetric. The integrand will he largest around
0.994t,, where 1, is the adiabatic collapse time. In the peak of rA . provided the phase factors expli(2,i
order to understand this behavior, we note that dl' df2 +Sp-)] do not produce severe phase mixing.
in Eq. (11) is proportional to the absolute square of the, For our initial ., of Gaussiao form, ,, is ie r, and the
following integral over !: quantity iA I rexp(-2' 10 peaks at Pk 2. and has a

I - dr rf:'sinSr . (16) width of A,z 2. lowever, sinSr oscillates with a
half-wavelength r S- 0.5. lece. there is str'ong,
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phase mixing of the emissivity. This corresponds ized gradient of ,y, (5tor)/S, is plotted as a function
physically to the failure to conserve momentum in the of r in Fig. 2(b) for the time t = 1.312, ajd is seen to
coalescence of two plasmons to produce a photon. reach a maximum absolute value of about 1

At later times, the packet has collapsed considerably, The phase a is also responsible for the eventual
so the rA 2 can peak at smaller r values with a smaller reduction of emissivity at later times. In Fig. 3, we
half-width, which is therefore less susceptible to phase have plotted (atr/8r),'S as a function of r at the later
mixing. In Fig. 2(a), we have plotted A? as a function time t = 1.324, corresponding to a reduced emissivity
of r at t = 0 and at I = 1. 312. The half-width of A2 has [see Fig. l(b)f. The emissivity is reduced at this time
decreased by a factor of 6. In addition, the quantity because of the positive and negative oscillations in the
rA2 now peaks at 'A =0. 25 with a half-width -ArA , 0.25. gradient of a which once more lead to phase mixing.
This peak and half-width coincide with the peak and The reduction can also be viewed as a cancellation of
half-width of the first maximum of sinrS, which would the integrals over exp[i(2a + Sr) I and exp[+ i(2a - Sr) I,
seem to indicate reduced phase mixing. However, which have slightly different narrow regions of sta-
effects associated with the phase a of the field are tionary phase.
also beginning to come into play at this time. A region A word is in order concerning the physical signif-of stationary phase in the integrand wr Eq. (16) cor-

icance of the phase a. The momentum density carried
responds to a range of points where IS±(aa/ar)i by the Langmuir field is" p=(I/2i)(E*VE -E'VE-).

becomes significantly smaller than S. Such a region In our case, this reduces to
of stationary phase is beginning to occur at t = 1. 312
and is seen to overlap the peak of rA7. This also con- p= [k, + Vla(r)ll El?.
tributes to the reduction of phase mixing. The normal-

Hence, 14 is a local plasmon momentum, which arises

from the nonlinear dynamics of collapse, and adds to
k, = e'iv 'b. (We should bear in mind, however, that
arcrYge plasmon momentum is conserved7 and equal

120 to k5 in the adiabatic stage of collapse so (V-) fdir
X: E I"'va/fdrl EI2 = 0.) The momentum conservation

100 in the coalescence of two plasmons to produce a photon
thus becomes 2k0 - K0O - 2V(v 0, which is essentially the
stationary phase condition in the integral in Eq. (16).

80 f 1 312 Since the square modulus A narrows spatially, the
failure of this phase matching condition is less serious.

60 The gradient of A is I VA/A l, which we may identify

as a spread of wavenumbers Ak. Its maximum value
40
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PIG. 2. Langmuir packet evolution. (a) Square modulus of -.8

Langmuir field, 1012 as a function of r at i =0 and at t =1.32.
Note the Gaussian at t =0 appears flat because of limited range -1
of r plotted. ()) Gradient of intrinsic phase of Langmuir enve-
lope in units of momentum mismatch s. as a function of r, FIG. 3. Gradient of intrinsic phase of langinuir cnvelope in
for t 1.312. units of momentum mismatch S, as a function of r fort -1.324.

148 Pt4ys Fluids. Vol. 24, No 1, January 1981 d. Hafizi and M. V. Goldman 148



of . (_rA)
"  becomes broader as real-space collapse /dJ1 0.025 - .03 ergs sec' sr'

progresses (as -rA tends to zero). At t = 0, we find \Itt 1.325
A4,k, zO IU0, whereas at time /-1.316, A. k, 601'-.
Thus, stationary phase becomes less important as and obtain for the time-average volume emissivity the
collapse proceeds. The exception is the late stages following result
in which the phase oscillated rapidly, causing the /dP\
resumption of phase mixing. P " \di*/'

It is important to note the role of coherent phase in .
this calculation. Past estimatesg of the volume emis- 8 . '003

sivity have been based on Fourier space expansions of

the sect -id-order current in terms of Langmnuir fields. 8 ' 1. 3265 300 J-
In the resulting current-current correlation function, 8 ' . , I

the docorrelation of four fields is perforr,ed by as- 1 rr " x0.003,
assuming the random phase approximation. Our cal- 4 41 , b  "\
culations are in real space, rather than Fourier space. where 1.3265 X300 'z, is the numerically determinedR
The existence of an assembly of wave packets in real
space is due to random k-space phases, which cause
constructive and destructive interference. However, - ,
once a real-space packet begins to collapse,there is a Be
phase coherence which is preserved even for the in-
creasingly widely separated k-space components in the following Eq. (62) of Ref. 2: to is the background den-

spectrum of each collapsing packet. In this respect, sitc, 40 em" tb is the beam density, 10",i, r. and
the c( herence of each collapsing packet is taken into .- 1,. are the beam speed and spread in speed, with
account in our calculations, although the contributiol, Al, " " 1, .1",. ,. , Eq. (9a) of Ref. 2, and .1k, .
from difterptl packets are incoherent with respect to = ', I b), Eq. (9b) of Ref. 2. The quantity I' is
each other. Statistical assumptions underlie only our a factor (described inl Ref. 2) which relates to the
treatment of the density of collapsing packets, which depletion of beam modes according to two different
yields the volume emissivity. evolution scenarios. The final answer for the volume

emissivity is therefore
Another differnce between the present calculation and

past work8 on the emissivity concerns the relative size 1 > 10-:Fergs cm sec sr- (17)
of-the average plasmon mcnentum K,. In the "head-on" This is compared with the measured' value of 2:.10-
apl)proximation, the plasmon momentum spectrum is [see also Eq. (1) of Ref. 2). We see that in order to
assumed to extend over a region of k space much reconcile the two values, F has to be around 10 .
greater than A',, and containing "head-on, "or oppositely Ctnsidering the arguments presented in Ref. 2 con-
directed, plasmons whose momenta are much greater cerning the magnitude of 1', we see that a value of 10
than K,. This is not true for our initial spectrum, but is not unreasonable.
in the late stages of adiabatic collapse where we find
the greatest emission, the spread of momentum con- VI. CONCLUSION
ponents Vt in the packet is on the same order as A,,
so our approximations are of marginal validity (see the Our calculations for a group of collapsing Langmuir
Appendix). wave packets account quite reasonably for the observed

emissivity associated with type-III solar radio bursts.
In order to compute the volumne emissivity, we need These results are encouraging enough to merit further

to know the density of collapsing packets n in the beam. elaboration; in particular, there is a clear need for a
We just quote the estimate made in Ref. 2, better estimate of the density of "collapsons."
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Appendix of Ref. 7. 50, so the adiabatic approximation is marginal. At

For the waves to be electrostatic, we must satisfy later times, it would appear to be violated. However,
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Self-Focusing of Radio Waves in an Underdense Ionosphere

F. W. PIRKINS

Pljkmaj 'h %i, I d.,"Wo'rl l'rinc-eti,, Univeroihi- Pintio, .N..e Itri ii44

M. V. GOLDMIAN

iieparrinI .4.4 sir,. Geo.ph ii.. ('niver,iv of CuhoIado. Bouldder, I olurado, 80309t'

T he iheo.ry ort elfttcusig instabilities in the ionoisphere is developed etiphasiizing the trituat paran-
eters req~uired io obtaitn sufficnl fiii temporal and spatial groiwth rates sto that the instability miay he
o,ifsseti It is show n that self- losusing will noti occur unless 2( '~/ < 1. where 'is the radii. wave fre-
qucics. A ;spiai iopheti. plasnma irequensy. atnd I the spatial growth :ength (in the I rcgion, Iz
2 kmi is used. -title in the 1: tegior Iz I km )In the / region, the threshold p-ower flux P, is P,,z 15

Ohn 5MIkF M ,jfjK ), (i~ i lt cmi 'i,)~'(,, where n, anid I, are typical electron densities
aiid eiemperatutes. and ( , - I dclpends on spatial and tenmporal growth rates In the E: region, the result is

11 , z nI m nv)-i I S kkit IC , fii ii 'it,. %here ( , :zIagain depends ott groiwth ratLs linmen-
sional anialyvsis indicates ninlinear saitiotin will et in ,when, kartations of order unity occur in the radii
wate itensils The correspordine. relate electron JtIsits ttuktuati, s are gisen b in, n - . I %p-
p1 cat ins to) P1lan ned ion- ~Phel t heating experimrents and ionospheric maodificatiiir bs the iii o ow a
beami :r,- a satellite power station are discused

I 1l1, 1 R(tMt ( I I N htlttN. lit pattkUlar. the ittstabilii\ exhibits expinentital

Sell -locustttc ill radio A~ates in the f rceetit .it the ioo-Lrowthl botht in ttnic and tn space ailiong the direciittlI 01

sphere ha-, occurred ti rttan os erdense ionosphere trodilica- radiosmavc heam [he p'oal sit this whork is to use tis it ttdctI

ks'n c pn s Thone unit Perk% N. t74. D~unacan andj standing to caictie the threshold radiow as ke pit Ct Toii
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o ,f tfteor , 11i ,, and (iur'evich. 19~70, ( roin and feler. 1974 *practical interest 1 he ke\ co'nstderatiions hex ,oid the hsj

sur', ii ht. I 97s ierAim and I u/toi. 1 9741. 1These theories all in- physical principles dense f rot the finite extent oft the .,-ti

dite tt iiat celt-focusirng should occur in underdense iono- sphere (which mecans that the spatial anipllicition i 1,c
spheic ondtios a wel, nd rcen obersatins oroht- sullicientl\ ra pid) and the finite width oft the radiwtse~k heat,

li aric Xoiion a,7 ae ua itaticent ibncrord with his In pairticu ILir. lie temporal growth ttime must he a rti,ill tr,,
i- ad~c ii 'ii I v he ? aniro e ionosphteri heain acilith thow lion of the titie it takes the aimtbient F- x B drift to i~cut . thcprclicionI h imroed onopheic ichngfaclites iownospheric plasma t hrough the heam F hese t s i cotik liti,,necaritig conmpletion at Arec~bo and I1roniso %kill permit sciert-

it ts nvetigtiin o tiderens sel-lctiiiit bth n te / set the practical threshold power fltix In contrast.icrdt

and f tcetions Furthernmore. there is current interest in) what to equtioin (6.311 of (;trmith [1Ii)j. there is nio Itishold

effect the 2 4 1,11, micriiwv cis bam fromt a prioposed Satellite powker fltix for the Nelf-fictiing jninstahlty

Powecr Station (SPS) I Btrown 1473, (llaxier. 1977, VanAe tt , There arc somne interesting iiew ph 1 sics points a,, well I irst

I 97sJ] w i Ild base oin the ioniosphere It %% ill he shown that wie shall show that there is an tipper limtit ito the radioaiw s

self-focusin; sit Ilic SPS niicrow ave beam mai' well occur. hut tejin~,bsewihsl-otsn ilro cu o ie
not inci lltonsphri onitinsdiini of finite extent Secondli . in the E region. the ton - tou
itsra tolto frquc nv_ alled tonheh risondtios

iis impo rtaint toimcstt clearls what the wtid iinserdeiise t 2al \ollisto frtneya'.ecd the io oion atriilthreciei
nicins We taike it to mecan that the radiow-ase IreqUeiie), ICX- *. .ihmenthio ntona.rstlentnti.
seeds the not sitim ionospheric plasma frequenc f,, so. field line is allow-ed As a con sequte itce. io n mit ion Lan be sI I

thu esoi ii inerat tnssuchas araetri deay n- icie iiiIN r.' pid sot that recomnbintt tion do es not stippness the
thit es ii Fitrac ionl~. uch js araeric ciScl. /'rin- self -locuitimg instability as predicted b\ ( tires cli
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a3) zon the application: For most ionospheric modification expert-
ments z is vertically upward; for SPS beams, z is inclined
downward, for powerful HIF transmissions, z is almost hon-

A- /.ontal ]Novozhilov and Savelyev, 1978).
The previous work [Perkins and Valeo, 1974; Gurevich.

19 hi has shown that self-focusing striations do not propagate
relative to the plasma. But the ambient E x B drifts will con-
vect the plasma through the radiowave beam which is station-

a ary. Typical convection velocities iz, range from 20-60 m s-'
[Blanc and Amayenc, 1979], yielding interaction times T giver,S,// "yis out by

RADIO/ .a 30ms'
b WAVEtT - (300 s)v,5-ml T~ =' I

A -O

In order for instability to fully develop, we require that the
growth rate y satisfy

•yT - 10 (2)b) x STRIATION ]

GEOMETRY In practical units. (I) and (2) combine to give

Our model takes into account the finite size of the micro-

wave beam by requiring that the growth rate be sutticientfl,
RADI fast. Apart from this. it is a good approximation to assume

aWAVE that the initial microwave beam intensity is independent of
the y coordinate, so that in a linear stability analysis one can
employ plane ,kave structures in the y direction. Quan-
titatively, this approximation requires that the beam intensit
change by a negligible amount over the scale size of a stria-
tion. One can easily check a posteriori that this approximation

is out is well satisfied.
In the F region, a plane wave approximation is not appro-

Fig I. Geometry of the self-focusing instability ta) The radio- priate in the x direction because electron thermal conduction
wave beam is propagating in the z direction. The actual onentation of
z in space depends on the application (see text). The magnetic field and plasma ambipolar diffusion along the magnetic field plaN
lies in the b direction which is taken to be in the x - z plane. The fi- an important role in determining the threshold power flux
nite dimensions of the radiowave beam in the x - z plane are in- Following the previous work, we shall assume that the per-
dicated. (b) Geometry of the self-focusing striations as viewed along turbations grow exponentially along the center of the beam as
the radiowave beam. The striations are elongated along the magnetic e"' . Hence, the self-focusing instability is a spatial amplifier,
field and grow slowly in the direction of the radiowave beam, but they
have a rapid spatial variation the z x b direction (i.e., the.s direction), requiring seed perturbations to get it started. The growth

length I must be sufficiently short so that the total spatial am-
plification e' is large (A = 7). For the F region, we shall adopt

regions. Section 4 applies these formulas to planned iono- a nominal value of I = 25 km while for the E region I = I km
spheric heating experiments and to the SPS microwave beam It is important to keep in mind that I represents the ex-
The paper concludes with a discussion and summary. Certain ponentiation distance along the radiowave beam Beams
aspects of the etgenvalue problem associated with the finite propagating obliquely through the ionosphere clearl have a
beam width are discussed in the appendix. longer path length available for amplification than do verti

2. MODEL AND EQUATIONS cally incident beams.
The calculations below constitute linear stabdity analysis

The basis for our model is the recognition that the trans- which yields a generalized dispersion relation, i.e.. a function
vere dimensions of ionospheric modification radiowave which relates the temporal growth and the spatial amplifica-

beams are substantially smaller than the characteristic lengths tion lengths to the power flux in the beam and the wave-
associated with the ionospheric plasma. We shati ther;oe number in the v direction. This dispersion relation will form
adopt the model of a plasma with spatially uniform properties the basis of our application discussions.
but containing a radiowave beam of finite transverse dimen- Our model incorporates the following physics: (I) Radio-
sions. 2a. propagating in the z direction. The plasma contains wave propagation is adequately described by an isotropic,
a uniform magnetic field B in the b direction which we take to parabolic approximation to the wave equation [Fock, 19651
he in the % - a plane. The principal spatial variation of the An isotropic index of refraction is a valid assumption because
striations associated with the self-focusing instability can then the radiowave frequency is large compared to the electron gy-
be shown to be in the z x b direction (i.e., the .P direction). rofrequency w >> t,. (2) The calculations are done in a frame
Figure I portrays the geometry. in which the ambient electron drifts vanish. (3) Ion motion is

The actual orientation of the z direction in space depends controlled by ambipolar diffusion through the neutral gas In
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the E region, the ions have an ambient drift relative to the The overall lensing cilect asso.iated with Ili h,,,, been
electrons in the range 20 tA) m % ' Harper et al. 1i97b1. (4) nored Since the tiri order tield. I, propagates aImt pa..J,;
Electron motion and thermal conducti, ity is along, the niag- to - (1 C k -. ,, we have taken their polarization, to 1,,
netic field and controlled by diffusion through ions and neu- paiallel and uscd sLalar tields E, and E,, in (8) A further qin-
trals. The E x B velocity does not generate density fluctua- plification rCrslts by noting that the plasma density siriati fis
tions because it represents incompressible motion. For will varn tn .h inore rapidly in the v direction than the , ji-
simplicity. the ambient electron temperature is assumed equal rectioll. so that the t derisatives .an he ignored in h) I oIt.
to the ambient ion temperature. (5) Recombination takes place simphliLation i, based on the recognition that variations in the
in the E region. (It will be shown to be of moderate impor- t direction imply variations along the magnetic field (see F ig-
tance.) (6) No ion temperature perturbations occur because of ure 1). The high electron thermal conductivity combtned with
their good thermal contact with neutrals. (7) Ohmic heating rapid x variations supresses instabilities. Hence equations is)
by the beam provides a heat source in the electron equation, become

Electrons lose energy by exchange with ions (in the F region) a .t

or with neutral molecules (ir the E region). We have ne- 2rk,, - /' - k:E, lA,,
glected electron cooling by excitation of O('P) levels in the I- 8:
region, as it ts generally less than electron-ion cooling at and 0)
above the peak of the F region [Perkins and Roble. 1978. Fig-
ure 7). Furthermore. the comment following (52) makes it , A 'E, -( A i.,

clear that our F region results are not sensitise to the electron
cooling process [he self-tocusing instability is driven bN spatially depc:

Let us first turn to the equation governing radiowase propa- den: ohni, heating Q which enters through the stead. stat.
gation in a medium with weak density fluctuations Since wke electron heat equation
can safely assume that the ionosphere ts an tsotropic medium.
the equation governing linearized wave propagation is (I= cK A 7" i Q - V,,n 7, 0

V2  
.C =) 04) where

which is solved by Q 1 E, + E,(F, + E,)e' Los (k, -- wt) +

El(i. i = , + (x, :e" cos (kv - ot)l ."
+ 1K. + I.(x.z)e' cos -- ( and J is a coordinate parallel to tho. iagnetic field (see Figure [nhC

la). Here. r, denotes the electron energy relaxation ire-

The justification lor steady state in (4} is the condition y71w(/ quency. r the electron momentum collision frequencN. and A
c-A,, I. where I is the scale length. /E,/E,,. The plasma fre- the electron thermal conductivity. One can easily check a pos-
quency i'.,'x) is given by teron that the temporal growth rate for self-focusing in-

stabilities is small compared to the faster of two rates (I ) the
= r,'( I - 8n/,,,) rate of electron heat diffusion across the radio beam (f re-

in terms of the relative density fluctuations gion) or (2) the electron thermal relaxation frequency r, i E
6n/n,, = A(x. :)e cs (k - region). Hence the steady state heat equation is appropriate

The electron heat equation is best discussed separatelN lor

Our notation is straightforward A is the wavenumber of the the E and F regions. Let us first consider the F region w% here
plasma density striation in the y direction. w and -y denote the electron-ion collisions dominate the physics. The appropriate
frequency and growth rate of these striations. w,, and k,. = , collision Irequencies and thermal conductivity are JBragrnsiu.
- c ' the frequency and waver -her of the intense ra- 19651
diowave in the absence of striations ne Poynting flux P,, of
this wave is K= 3.16T,.n = 3

P. c~k) tl2 I

27r -i-. 4(27r)' I ne" In A "2
3 m :' ..-54

where the last factor is effectively unity because the plasma is

underdense: ,, : to,/. Let us substitute (5) into (4). retain where m and XI c-tote the electron and ton (taken to be 01
only terms linear in An and V. and make the assumption n':.ss. respectively. Both a zero-order and a first-order solution

a l to (10) and (11) are rr.,";red. Let us write this as

7; =A T,' 4 AT,i + T

which leads to the linearized parabolic wave equations ind
where 7. is the ambient temperature. AT,oi is the heating cor- an!

2, - AA 0 rection produced by E,,2 and AT," is due to E,.E. We assume
8 : ' +  k  

that departures from the ambient electron temperature T, are
(8) small:

- 2Tk,, : , + - . 0ST ",+ilI0
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The electron heat conductivity equation can then be written The last term on the left-hand side of (20) brings out the corn-
del as petition between the stabilizing effects of density fluctuations
be (caused by the density dependence ol the collisjn frequ-nc)

- C C. d-,,-i- JE) + E,,(E, iE,*) and the destabiuing contribution from self-focusing
ns 7 ae W In the E region, electron-neutral collisions play the princi-
h-(n/n -, pal rolt. Furthermore, the ohmic heating may be sutlicientl,

-'- .,--( - 1 13) Intense so that the electron temperature in the radiowave
1e beam considerably exceeds the ambient electron temperature

where [perkins and Roble. 19781. The principal electron temperature
h dependence of electron-neutral collision processes is ade-
4)= (T,/T 0)" (14) qoately represented by considering only electron-N. colli-

and sions. Thus, in (10) and (11), we can use [Banks and Kockaris.
19731

S3.16T
2n,,

, P_ =T 2.3 × 10 -  
n

C. = w,,/2mc~u (15) n T'j n",
K . . .. . . ( '4

C, 3T,,Pja,,(m/MA) The electron-neutral energy relaxation frequency ;,, is L:ncr-
ally much smaller than the momentum collision frequency v_

Let us expand 8 as but has important variations with temperature. For energy

= 1 + 6('± 6( (16) loss by excitation of rotational levels, one can take [Banks and
Kockarts, 1973]

where 60'" satishes the linearized equilibrium equation with , 0KX ,.K
constant density 1. 1 X 10 T -n.- "J (26)

0 = Cv ( + C2 E,. - ,7 (17) while for excitation of vibrational levels of N2 the appropriate
7 aj 7 fomula is

I he equation governing the linearized response to the self-fo- I l000K
cusing ohmic heating term is ,, = 8.6 X 10- j--100)e T,,

2 C' , E,'26 3 17 aJ- 2 + 73 According to (26) and (27), the transition between rotational
and vibrational cooling occurs near T, = 150(0 K. A loer

+ 2 (1" transition temperature would result had vibrational ex-
E,, 7 citations of 0, been included, but this will not be important to

where we have heglected the small cross terms SO... 86"'. etc our arguments.wer whe hempeted thetu smallocossterm with the. setc The next question to answer is: Will thermal conduction or
Let the temperature perturbation associated with the self-fo- local cooling control the electron temperature perturbations in
cusing instability be denoted by the E region? Let us introduce a characteristic length I.,

8T"' 2 which makes the rate of cooling by thermal conduction (esti-
= . (9', " ' i:,z)e" cos(k.- wt) (19) mated by (K/n,)(L, :)) equal to the local cooling rate [he

formula for L, reads
Then, in terms of the power flux P,. the equation governing T
reads I. = = 9,, x (28

IP1 _,-. 2~+--+ -0 (20) where we used the rotational cooling rate (26). The Cira(1972) atmosphere gives n. z 5 X 10' at 120 km Hence
where throughout the F region, electron thermal conduction will not

C, 1.0)51:, M play a major role, provided the self-focusing striations hae a
i'C, m (21 parallel wavenumber satisfying k L. < I On the other hand.

the characteristic scale szes for radiowave beams and typical

, , (22 sariations in E region parameters are at least several kilome-
2ytC, 4-ve-M ters It follows that in the E region a plane wave model with

A l., I can be used in the direction along the magnelic hield
and % is defined in (7). In practical units, the formulas for P, T reIteate ur a n the ipotanc fema

and L, are To reiterate. our arguments show the importance of thermal
eonductivt, is different in the E and F regions. Because L, is

,1M (23) comparable to or larger in the - region than the sie ofthe ra-
m' I0(K) KI15 MHz diowave beam, in the F region we must treat a nonlocal ther-

''T, -I m 'mal diffusion problem. In the E region, the radiowave in-
L,-(13 km)I T,, -fl~rcm (24) tensity does not vary over the characteristic scale I,I 0O)'K ~ n permitting a plane wave approximation
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As was the case in the F region, the solution to the electron Should show spatial exponential growth along the direction ,f "h' l, L.
Lemperature equation in the E region is composed of an equl- the beam In other %,oids the functional dcperdcnce %4l r "
librium pan T., which can be taken as spatially uniform and a 'Ufh" I
perturbed part. The equilibrium part as the solution of = - ,, exp (71/1 cos Qj', 1

3
4uj t *I

= (T-- - r',) (29) .s+ OSin9 CO 4'(,,, Io., I
where the right-hand side is just a function of I,,. The per- %here I is the real spatial growth length along the direction (,i
turbed part satisfies the equation the beam. and (,. is the magnetic dip angle (see Figure ]a)

All other dependent variables will have the same functional
L2 . IE, -t E, # form. A standard coordinate rotation yields

w8: 88v.nwhere 1): = o d q~ s ¢, 5

T with the cor.sequence that2 2 y . "I aT '' -t- ( (3'1,ar
3 : + 2r, .:,,,,8.:,,* a ],

+ (3 [a)s , a

" -Ts- - I s31in 0nd,

T, d Using the functional (orm (34h) tbr E,. -'," and .A and (35), ve ",'

Here r = 6T/T, and the subs" ipt 0 on collision frequencies -an solve equations (9) to obtain
and temperatures denotes evaiuation at the equilibrium elec- E,+
tron temperature T,,. In (30) we have retained the thermal . - = --.

conduction term. For a thermally stable equilibrum solution ,
to exist, one must have fP > U. Aherc

In the case of HF ionospheric modification experiments, the
second term in f will be small near threshold and T_,, %ill be a= 3/2A. ,3

close to T, Under conditions where the equilibrium electron The dependence of (37) on a is characteristic of modulatwTl ..
temperature is well above the ambient temperature 'r,, >> T, instabilties jBardell and Goldman. 1976 1. Two interestg.
IPerkin. and Roble. 19781. (31b) shows that /? z (T/1P)(8,,,/ obserlations can be made at this point. First. the term eval-
87) : 4 because of the rapid increase ,f vibrational cooling uated in (37) is the destabilizing term in (20). The most un-
with electron temperature. stable moies will occur when (37) has its maximally negatise

3. SEt t--FoC.tSIN, INSTABI ITIES value. Since I is fixed by the requirement of a particular rate
of spatial growth, the most unstable mode will occur when theThe equations governing plasma motion also differ in the E function 20/(al + I) has its maximum value. This occurs

and F regions, because in the F region the ion-neutral colli- when w hc c

sion frequency v,. is much less than ion gyrofrequency S1, and ,on 1h)
plasma motion can proceed only along magnetic field lines. In a = kl/2k, = 1 (39) 0 T

the E region, v,, 3> U, and ion motion across the field is impor- In practical units, the perpendicular wavelength A, of this
tant. mode is

Let us turn first to the F region. where the formula for i-,. is
[Banks and Kockarts. 19731 . =2.1.2km) -1 15 M HL 4

k f ( 2 5km
, = 7 x 10- 

"' 
n, (32) A f S

3~) where .f is the radiowave frequency
At an altitude of 300 km, the Ctra (1972) atmosphere yields il he scon ration concn

I Hz. The Second observation concerns the competition betwen
the destabilizing (37) and stabilizing terms (2A) in (20) ThusUpon elimination of the ambipolar electric field, the mo-
for a stlf-focusing instability to occur, in the F region, the in- d'" a,menturn and continuity equations governing plasma motion

yield equality

da~ ~ ~ ~ - _![C "I I .1= 00 >1 41
0 -2T(- - To - M,,.,,, 03a) 4k,,c f =-m 25k i kin hec

a lt the i.
431 t must be satisfied. Clearly, there is no question that this in-

+  U '33b) equality will be strongly satisfied for HF ionospheric moditi-
cation experiments. But the SPS application is a close call We

where A and r are the relative electron density and temper- can recast inequality (41) into the form
ature fluctuations defined in (7) and (19) respectively. Equa-
tions (9), (20). and (33) form a closed set which govern the lin- 4 -4 _,, I > 124GH2
ear stability of self-focusing striations. l0 cm - 12.5km p-f

These equations are most easily solved in the (. 71) coordi-
nate system of Figure I. It is clear that the dependent van- which shows the ionosphere is ordinarily just dense enough to he
ables shouid depend on the distance along the magnetic held permit self-focusing at the SPS frequency. Inequality (41) has tied
from beam center, J -,, where £, , -,gsin o,,/cos 0,,), and physical significance: it says that a iOE% density modulation lead,
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ion of should produe a phase shift of at least 2- bet een two ras -

'U be paths in a dittne I It i eident that unless the ionosphere is au2

futicientl. dense to produce signifi,:ant phase shifts, self-h,-
- cubing could not takc place %4,here

Let us return to the caLhulation of the threshold value for 1
(34b) region self-focusing It will turn out that the threshold flux is u,, = (aL, cos o,) (54,

substantiall. less than P, Thus. combining (20), (37) and (41),
,) we obtain the equation DP, 2a

ional a.' T &(c 1, __ )-

i3 L, L,:P 7  o+ I The next step Is to find the eigenvalue A in terms of the pa-

where rameter u,. In general an analytic solution of (53) is not pos-

(35) sible. However, we can obtain solutions when u,. as I and

I 6m=n , ,'c 4 when u x I. For the case u,, >> I, we expand the exponential
P, = nT'-j ,l (44) and obtain the harmonic oscillator equation of quantum me-

chanics
and we have explicitly indicated that the power flux in the ra-

(36) diowave beam varies as a function of, - .,.. Combining (33a) A + (.N - 1) - A n

and (33b). one obtains the plasma ambipolar diffusion equa- au: u,, 0 (56
We tion whose fundamental solution is accurately given b

aA =2Dd A+ -& u 1 1

(37) D a a T"  (45) A=exp -j +

where
A Z I + -t;,

1)= .Mr.(46) u,,

3s)
Substitution of forms (7) and (l) into (45) shows that w = 0 When u,, is large, A becomes small before u/u., reache, unit..

Dal and justifying our expansion.
ing d2  a' When u,, << 1, the exponential term varies rapidly, compared
4l- yA = 2D A + D . (47) to A and we can integrate (53) assuming A is constant (but d.1,
un- k., au varies) to obtain the eigenvalue equation
tive The coupled set (43). (47) can be simplified when the varia-
ate tion of P,, ( - ,,) occurs on a much faster spatial scale than I(A /
the L,. Indeed, this is our basic approximation. Hence in regions A-u=-1=-A a uu Iu))

uIs where P,, is appreciable, we can ignore the term involving L,

on the left-hand side of (43). This permits an elimination of An adequate interpolation formula which combine., (5N) and
19) a'r/&d and the qigenvalue equation becomes (59) is

lis Y a2A P( - 0 2a 2
h-A-2"- --- ,--A -+--i, - (48) A= I + -u ))

0) and the boundary conditions are Most self-focusing expenments have u,, 3 1. In the appendix it
is shown by a variational principle that the interpolation for-

A -A,.,exp - . (49) mula (60) is likely to be accurate in the vicinity of u,, Z. I
2D Our key result, the generalized dispersion relation, is

ias I o - -- o. For definiteness, we shall assume that the ra- 1 2

diowave beam has a Gaussian dependence in the x direction
P,,( - P,'e P-'2, - (, iv,( = t, ... ., -'- ".'.. , (50) 2a t]

II where 09 is the magietic dip angle (see Figure la). We make where

the change of variable L,P=' yv, ,
(SI) P' = -- -- 

3
.1.(nT.c )) (62)v u =(- ,I (51) 2D ' Vol m

£ In practical units, the formula for P,, is

L, 2 ' 3.3 km)(__ K) (H (lo s) T. 14 f~(~m''~ ~ IM

(52) with the definition

The neglect of the I, :term on the left side of (43) is justi- y- 25-km /-vr, /
fled by the inequality L,2 -4c L,-.) This change of variables " 1) -s - (,)
leads to the nondimensional eigenvalue equation
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We note that the critical power flux is qtite seisitive to ,er- where 'Ic .

perature and density. principally because of the density and n th: I
temperature dependence of the clectron-ion collsion re- P,------ --- (I + k L,2, (76) lhsir
quenc, v,, The requirement for a rapid growth rate limits the ffcqutf
self-focusing perturbation to the center of the radiowave [,dt,
beam. because otherwise plasma ambipolar diffusion would Next, we make use of(75) and ot the fact that the most rapid tot
not be fast enough. This is in contrast to the results of Gurev- spatial variation comes from the exp [i(kv - wt) dependence nd h,

ich 1197NI and Vasko' and Gurevich 1)97 7a. 1)), who ignore the to evaluate (66) (71): valuc t.
fact that ambipolar diffusion proceeds at a bntte rate and that k 2T, k+T,,w MH,
only a limited interaction time is available because of ambient +A,+kV + = - ' (77)

E x B drifts (see (1)).
The plasma dynamics of the E region requires separate con- k 'T 1 O(7t

sideration of ions and electrons. The ion motion is governed "+ ,mp. P, =m , ,,,l ,
by the E region ion-neutral collision frequency 1Banks and ';'he s,
Kockarts, 19731 "he solution of (77). 78) is,

v, = 7.5 x 10 '"n. (65) j = kv,.; i I + (79) gion M

Using the ( ara (1972) atmosphere, we find v,_ 1.4 x 10' at The.,. I
110 km Since P, :a R,. the ion motion is unmagneti.ed am- P, = P, I + T. ( + F)MvI kmv80) he

bipolar diffusion and governed by T, k:T., k ,A1p. sequcr
them .i

+ + Let us dis'.uss the result of (0). First, for nominal L region Din,

a + Vv -A •,- (t,6 densities n,, - I0' cm-'. the recombination rate F' = 2na - 0 the r.*
x 1i0 s ' is comparable to the growth rates we envision. Sec- the fl,1,! + T67) ond. for values of a = k/2k. near unit, the ion diffusion rate

= -M ,, , ,7 , , i s

Sei/T., Y - 2an,, (68) k (T,,+ T,) 2k,,(T, + T,) I _
/ , . Mv,. IMp,, (0.1 %hile

where is the electrostatic I-otential, and = 3 x 10 cm' s 15o0s + L ,..
is a typical E region recom~Mation coefficient. Equation (66) " , 15 Mrz
takes account of the relative electron-ion dritl v,. The corre-( " ts' )( 1| 'T '( M 'z) Ca(Se
sponding electron equations are which is also comparable to growth rates. We can, however. ti,!!

satisfy the double inequality co'it.
. + V•V -- 'A (69) 1

L > k,,' Mv,--, (82)

- eli,0
¥ =eB,,-V (0 because r~~

It 1

V_ V(A-4+±T) (71) k2!, (8,~ :l3)

inc g
where vi, denotes the electron-neutral collision frequency (25) The first pan of the inequality (82) justifies our assertion that sO-n,it
evaluated at temperature T,,. thermal conduction is small relative to local cooling in the E \a%,

The appropriate torm for the dependent variables is region. As a result, we can choose k,' so that terms involving dri, r
I g(t. U Re A,, e" .... k,. in (76). (79) and (80) are ignorable. This choice minimizes the dl

the threshold flux and leads to the generalized dispersion rela- ular
a g(t, , 1) Re % e" . . (72) tion \%,i\e

.2  ~ (+F pro'p.,
roP( .P , a 17±Rr,+ -(-++ I) (84) a era

s2here )av ,
where I

g(t. J, 11) - e" cos k (i - &,)I exp [j/I cos On, (73) whre a ni,

and ., is real. Hence A has exactl' the same form (7), (34) as P, , - n,,(T., 4 T,,)cI -  (8) an
the F region calculations. It follows that we can use (37) in In practical units, the formula fr P is wave
(30) to obtain nscmti

ImW[ ] I',10 cm frequ
2= a, - - . . (74)C (86) (41)

417 74 ~&~sell-f
Equation (74) can be recast into where are r

1.T,,,, + To lI00°KliKIkm( polle

- ,, ( 7 5 ) , 7. p 1 . -, - ( 8 7 ) r o u g l
tion 5
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The temperature and density dependence are not so strong experiment agrees with this prediction Although high-peak
in the E region because neutral rather than charged particle power radars can esceed the threshold p,.,cr fluk. the long

(76) collisions are involved. The strong dependence on radiowave growth tines show that the sell-focusing intabiht, is driven
frequency remains. Formula (40) shows that the per- by the average, not peak, power or a radar systern.

most rapid pendicular wavelength of the striations will be close to 300 m There is a distinct possibility that the 24 (i-l nhncroiA., ie
ependene for E region self-focusing. The next generation of ionospheric beam Irom a proposed Satellite Power Station could produe

modification experiments will easily exceed this threshold selt-fo,using. Recasting (03) into a form appropriate to the
value for self-focusing, especially if the frequency is near f = 5 SPS, we lind

(77) MHz. (
4. APPLICATIONS AND )ISCUSSION l= n - RX)K 2 .4 Hz'

(78) Our central results are the threshold power fluxes for the
onset of self-focusing instabilities: (63) for the F region and where (, is given by (64) and is roughly unity. Although
(86) for the E region. For comparison, the European iono- planned power fluxes for the SPS are in the range 250 W ni
spheric heating facility nearing completion at Tromso. will natural variations in ionospheric density and temperature can
have an effective radiated power of 360 MW, yielding an E re- raise the threshold flux to this value Furthermore. the ohm,,.

(79) gion flux at 2 mW/m 2 and an F region flux of 300 jiW/ml. heating of the ionosphere by the SPS microwave beam itself
These fluxes will exceed the respective threshold fluxes, even [Perkins and Roble. 19781 can raise the electron temperature

(80) when f = 15 MHz. The question then arises, what are the con- above 2000°K, which works toward stabilizing the instabilit,
sequences of self-focusing instabilities and how do we detect Hence one cannot make an unequivocal prediction regarding
them? whether the SPS beam will generate self-focusing. Our 'e,tF region Dimensional analysis of linear theory provides estimates for estimate is that at times the ionosphere could be sufficienit

!nod - 6 the nonlinear consequences. We can interpret (37) as giving cold and dense so that self-focusing would occur According
on. Sec- the fluctuations 6P in the power flux to (40), the wavelength of striations created by SPS sell-locus.-
ion rate ing will be X, 10) m. By (88) and (42). the densitN fluLtua-

P 2-n[ .,.- 2 I (88) tions would be quite large: 6n/n - 10 A scaled HI test ,t
P. n 4k,,c' )ii-+ I, self-focusing at f = 15 MHz could validate predictions 1or the

i threshold flux, but would have a much smaller effeci , tele-
Shile (41) shows that the coefficient of 6n/n is very large. communications than SPS self-focusing because of the niuch

Consequently, nonlinearities will develop first in the wave weake!r density fluctuations at HF combined with the larger
(81) propagation equation and the self-focusing instability will scale size. Ten percent density fluctuations with scale si/e, ,,

I cause intensity fluctuations of order unity to develop. Equa- 100 m can seriously effect ionospherically propagated short
,wever, tion (88) provides an estimate of the magnitude of the con- wave broadcast signals. If the striations were steepened b\

comitant density fluctuations when SiP/P,, z I. The expected E x B dofts as in the case with artificial plasma clou,' I. ,(,'-
wavelength of the density fluctuations is given by (40) and napieco et al., 19761, then higher frequency telecommunic.1-

(82) Figure I portrays their geometry. Vaskov and (Jurevich tions syttems could be affected as well. A quantitatie mct,
11977b) discuss-a mathematical model for the nonlinear satu- gation of this question awaits future work. It i,, also evtdent
ration. that if the SPS generates self-focusing, then intensatt Iluctua-

It is important to recognize that the self-focusing instability tions of order unity could be expected on the rectenna
(83) generates density fluctuations with just the correct magnitude In closing, we can remark that thermal self-tocuing I, ufi-

and onentation to produce intensity scintillations in the driv- der investigation in the laboratory (J. Drummond and \k Ii
ing beam. Hence, in order for these fluctuations to produce Thompson, private communication, 1980) and in laer-tuion

I that significant intensity scintillations in a diagnostic wave, that applications [l.angdon, 1979). The details diler from the ionto-
.be E wave should be propagating parallel (or antiparallel) to the spheric theory.
lving driving wave and should have a frequency which differs from
mzes the driving frequency by no more than a factor of 3. In partic- APtPI NDIX. VARIAItONAI. PRINt.i'It ApPiRtoi\ii its,
rela- ular, the diagnostic wave should not have a component of its ro Ei(, NVALLI. PROBI I M

wave vector in the i x b direction, which would result in its In the eigenvalue problem of (53). namcly,
propagating acros, the density maxima and minima, thereby
averaging out their effect. The geometry of Novozhjlov and -_ )A = -Ae - A ,l
Sayelyev 119781 was ideal from this point of view with the di- the lowest eigenvalue A may be found approlimatel, hN tht
agnostic wave propagating antiparallel to the driving wave following variational principle IMorse and h".-!o, / hP 4- p

85) and closely matched ur freq,,ency. Radio-stars are another 11081:
possible source of diagnostic waves. In this case, the driving
wave would be launched in the direction of the radio-star, and = / Aj I ,UAe - - I.,\2I

scintillations of the radio-star signal should be observed up to A + ,

frequencies several times the driving frequency. As (88) and The eagenvalues are not trribly sensitie to the picise
86) (41) show, the density fluctuations associated with HF-driven

self-focusing instabilities have a magnitude Sn/n - 10 ' and shape of the trial function We use the trial function.

are probably not directly observable The charactenstic cx- A = e "
ponentiation times of roughly 10 s imply delay times of

'7) roughly a minute after transmitter turn-on before scintilla- to lind
tions become observable. The Novohilov and Savel'yev 11978) A (I + l/nu.l' (I + oI 4!
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Differentiating with respect to a gives the minimum eigen- LiVIt !or the saturated pAraimetnL instability. Phys. Rev. Lei'tt

value, A__,,, at 218 221, 1972
Dunican. 1. M .and R. A. Behnke, Obsernations of self-foccusing cr,.

a = 1( 1 +s lbu,,)' 11 /4u,, (A5) tromagnetic waves in ibe ionosphere, Ph~is Rev. Lett . 41. 99S l(X&l
1978.

From (A4) and (A5), we find the asymptotic behavior lecjer, J. A., and Y. Y. Kuo, Structure in the nonlinear saturation
speciraim of parAmetnc instabilities, Phys. Fluiids. 16, 1490, 1973,

2" Fock. V. A., Electro~magnetic Difftaaton and Propagation Problems. plrn 1N.-,,, 213. Pcrgamon. New York. 1965
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With magnetic fields that are not too wcak. I aigmuwr collapse times caii he prolonged and the packet
geometr, signficantl. distorted

I. INTRODUCTION of 641TnO, where t is the common electtron an:i Ion t(1i-

Within the last few years there have been great theo- perature, and
retical strides in the understanding of "self-focusing C 

2 
=_ r /3r,1 , 2 0 ,2 I

mechanisms for the nonlinear saturation of certain e P
Langmuir wave instabilities."" In particular, it has The magnetic dispersive term, (-Q2 2) P. S ), arise.
been shown4 for a class of weak "bump-on-tail" insta- from an expansion in the magnetic field. Tlh operator
bilities that direct spatial collapse can occur due to the PJ= 5tj-b,b projects out vector comiiponents perpen-
self-ponderomotive force of intense Langmuir wave dicular to the magnetic field direction b. In the linear
packets. This may have important implications for limit, Eq. (1) gives the quasi- longitudinal disier si i
type-Ill solar radio hursts. 'i for the radar-modified relation for an oblique Langni i.-.ave envelope
ionosphere,, and for laboratory and space beam-plasma '4 ; + 2 sin-a o2e|p

systems. ''
where 8 is the angle betweet k and b. The c'onditio~n Icq

In physical problems a weak background magnetic nee of the anslere ao th Tie i1

field is often present pointing parallel to the direction of neglect of the transverse part of the lield i,

propagation of the driven Langmuir wave packet. Linear Ql sind - C~k2. (2h)
stability analyses have recently teen performed"'8 for which we shall assutoe i, well satisfied. tt we re.,trict
monochromatic Langmuir waves in the presence of aweak mgneticfieldthe electric field to two dinmensionis. the. condition x',fiich
weak magnetic field. satisfied is weaker: IV 'siiv t' , .

There has been little work on the effects of a magnetic The density deviation Nz is in units of 2n, where v, i-

field on collapse. One theory7 claims to have found the average background density. obeys a hydrody-
stable pancake-shaped Langnuir solitons pumped by namic equation driven by the pond,,roniotiv'e force
radio waves in the ionosphere. Other studiesi ° 'li have
shown Langmuir collapse in magnetic fields, but only + , - V) , "' . (31

for special symmetries and in parameter regiiaes ap- where C. is the ion-acoustic speed In Ints of (30 m,
parently unrelated to experiment. Our work differs and i, is an operator representii the effect of Landau
from these in terms of parameter regime, geometry, damping of ion-acoustic waves in an equal teniperature
phenomena observed, and physical explanation. plasnia. We have also briefly studied8 magnetic field

First, we shall demonstrate, numerically, that weak contributions to Eq. (3), but find no effect on the ion-
magnetic fields can significantly prolong the time for linear evolution of a broadband packet (nnly a sinall vol-
collapse of a broadband Langmuir wave packet, and al- ume in k space is ffected).
ter its geometry into a more dipolar form, but cannot Our numerical work assumes S -7, aid uenerates
render it one dimensional. Second, we prove analytic-
ally a magnetic virial theorem which gives sufficient s

conditions for collapse, and helps explain its retarda- (1), namely,
tion. Third, we demonstrate that measured nevan solar ia,'V2,b + - 2 V . V. (,t9i)0. ()

magnetic fields might affect the Langmuir collapse as-
sociated with type-II bursts at 0.5 a.u., although only ed mode wta a chala(ifi of afiorl slow
for relatively low wave energies. dnoewihasaec irctitcofaposoN

bump-on-tail instability.' In real space this appears as

11. LANGMUIR WAVE COLLAPSE IN A an initial pattern of wave packets oriented alontg the di-

MAGNETIC FIELD rection of the beam [see Fig. I (a)]. The initial wave
amplitudes are centered about a k-space tavenuibvir (f

The Langmuir field envelope S obeys a generalized k0 --0.011 k,. The parallel and perpendicular width,, are
nonlinear Schr6dinger equation Ak -0.25 k,, Ak,, 0.17 k0 . The choice of these paraii-
fat 6 +I . -.SCXVX8 -- 2 p. S- =0 , (11 eters is motivated by the application to type-Ill solar

radio burst phenomena at 1 2 a.u. The ititial energy
where the units of time are o t . length is measured in density is Ll' - 16q 1ff) 1.3 <10-'. This vaIltie assures
units of v'3 times the Debye length, 18 12 has the units that \10W far exceeds the threshold ' ' for adiahatit, col-
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FIG. 1. E:-olution of Langniuir waves. In (a), 0)), 1c), and (d). we plot contours of equal La gmuir field modulus in real sp4ce.
The spacing in the 64 x 64 grid is four times finer in x than in y. Contours 1, 2, and 3 corre pond to W = I. xl Ko, 7.1 xI )0

and 1.6x I0 . (a) is at t =
0

: (b) is at w,,et 0. 76 x10' with B : o) and (d) represent the evolution from (a) (at times &,t 3.6
10 and 4.1 , 10' ) for the case .I,/ 0.1; (c) and (0 show field contours in k space for the nonmagnetic case (e) and the mag-

netic case (f) at times corresponding to (b) and (d), respectively.

lapse, although it is not necessarily the only choice for Sn .- I2 (5)
the type-1 problem (see Sec. V). The real space pac-
kets collapse as shown in Fig. l(b). We now derive a viril theorem for Eqs. (4) and (5)

(with 8= -V6). This derivation represents an improve-
Next, with the same initial conditions, we introduce a ment over the derivation o1 Ref. 4, even ill the limit B

small magnetic field in the k0 direction, such that Q =0, because the electromagnetic terms are treated
=0.1. The collapse is slowed down by a factor of 5, as more directly. That is, the VXVX S term in the lull
shown in Figs. 1(c) and l(d). The packets now tend to- vector field Eq. (1) is explicitly eliminated when the di-
ward a pancake shape, but are not one dimensional. vergence is taken to obtain Eq. (4) for the scalar poten-

We shall argue that the effect of the small magnetic tial 0. The Lagrangian density for Eq. (4) with 5n given
field when 11 =0.1 is to retard direct adiabatic collapse, by Eq. (5) is
In the magnetized case, induced scattering of Langmuir i( ,726_ 626 - v 2

0 1
2

waves off (dyna:-ic) ions
8 2 

seems to occur before sub- I V p6+ 1

stantial steepening of the wave packets, whereas in the 2 2 , V . (6)
n,.,magtnetic case it occurs later. For our parameters,
-he scattered waves are in the forward direction,6 wit.'
wavenumbers on the order of k 0/3. The evidence for 5x105

this is shown in the k-space picture in Fig. 1(f) for the
S2=0.1 case, compared with Fig. 1(e) in the nonmagnet-
ic case, 9 =0. The geometry and time scale for the 4xi0 5

configuration shown in Fig. 1(f) are similar to what we
obtain for a monochromatic initial packet, with B set
equal to zero (not shown here). For a monochromatic
initial packet, direct collapse cannot occur, because 3x10 5

there is no ponderomotive force, and the linear induced
scatter instability dominates at early times. This en-

3
ables a fairly positive identification of Fig. I(f) as re-
sultir;g from induced scatter off ions. A more one-di- 2X105
mensional configuration in k-space results, followed by
collapse.

In Fig. 2 we plot, as a function of f9, the time for the II0 5

peak energy density in a collapsing packet to increase
by a factor of ten. Significant slowing requires fl 0.1.

III. VIRIAL THEOREM FOR MAGNETIC COLLAPSE
0 0.05 0,075 0.f

We now offer a theoretical explanation for why the di- n
FIG. 2. Time for central energy density in collapsing waverect collapse is slowed down by a magnetic field. The packet to reach ten times initial value for different values of

results shown in Fig. I all occur in the regime of adia- J), as determined numerically from the initial conditions given
batic ions, where Eq. (3) reduces to in Fig. I(a).
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The dependence on r2o requires a generalization of La- packet, the collapse threshold condition can then be
grange's equation.13 Hence, the equation of motion [Eq. written
(4)]. is obtained from W,;24 -- (Ak", + AVRIj) k-D (13)

* r, + • - In/ax )['d(a-) ,ax )j~ ] 1 , In two dimensions, the rate of collapse is a constant

where a subscript of £ indicates differentiation with re- because A is invariant.
spect to that variable. With a nonzero magnetic field, the threshold condition

From the Lagrangian density we derive
1 3

.
14 

a momen- for collapse to begin is still (13), but the rate of col-
turn equation lapse [A - 2HB N, in (10a)] can change sign because al-

p + V T . (7) though A is invariant, Ha can decrease with time!
Therefore, collapse is not assured even if initially ..

where the momentum density is p= (S V SL - 8L - 2HB/N is negative. We find ii: the numerical siniula-
LV8)/2i, with 8L - -V ¢ . The stress tensor

3
'14 for a tions that Ha can decrease with time. As HB gets small-

Lagrangian with higher order derivatives is er and A remains constant, the collapse rate will go

_¢ . from a large negative number (fast collapse) to a
T"2 - 6- 'a 8(02&* dx ) ± c.c., smaller negative number (slower collapse). The col-

2 lapse rate, A- 2H!N, can even change sign, thus lead-

where c.c. stands for the complex conjugate. A sub- ing to inhibition of collapse due to magnetic dispersion.
script i on 6 or 0* indicates a derivative with respect provided

to x,, and there is no sum over i. Ak
2 

2 Ak,2 Ak, (44

The total momentum, P = fdr p is conserved for fields 3kK0 , 2-4---
which fall to zero fast enough at infinity in the (unbound- Close to the co Ilapse threshold, the right side oi (141
ed) plasma. Another conserved quantity is can be near zero. This inmplies that an infinitesimal

- f dr[ Iv. 2 -- L '+ Ha, (8a) magnetic field can alter a marginally stable collapse.

While (14) is necessary, it is not a sufficient condi-

where tion for an effect of the B field on collapse. This is be-

cause we have assumed that H8 decreases with time,
Ha= f dr-L " PI 2 . (8b) although this is not always true. The condition for HBto decrease cannot be derived from theory, but is dis-

The final equation needed to generate a virial theorem covered empirically from numerical simulation to re-

is obtainea from the longitudinal part of Eq. (1) rather quire that the magnetic dispersion be larger than the
than from Eq. (4). For an initially longitudinal wave nonlinear refraction contribution to the invariant A [see
packet, the transverse part of the field Sr, will remain Eq. (12))
small as long as inequality (2b) is satisfied, and as long (ak

2
Ak,) 

2  
W/24. (15)

as 4k<k 0. Then, ISrH,=O(IgL(1k:C
) 

-<SL . We
take the scalar product of Eq. (1) with SL* and subtract When the inequality (13) is satisfied, so that collapse
the complex conjugate to obtain the approximate result can begin, then the ordering implied by (15) yields the

2 + r =following easily interpreted criterion for an effect ofat ISL I "p=0 0 the magnetic field on collapse

From Eqs. (7) and (9) we derive a virial theorem
4  for the k;. 11c)

Q' 3 00 kD . (16)
the mean packet width, (r) afdr6r

2 
L

2
/N, where N This just means that the magnetic dispersion in the

=- fdr I S, 12 is the conserved quantity which follows from
(9). The virial theorem involves the trace of the stressdispersion. This on-

The r ltr involves tdition is independent of the packet width Ak,.tensor.' The result is

a2  
For type-lI parameters at 0.5 a.u., 4 0.01 k[n. and

S(t
2
) -2[A - 2(11/N)] + ( 2 - D)( ,) (a) = 0.01, so that the terms in (16) are roughly equal.

A =_ 2HiN - (PIN) (10b)

Here, D is the dimensionality of coordinate space (D IV. DISCUSSION

-2 for the numerical simulations). In the previous section we maintained that a magnetic
field can cause a wave packet to evolve toward snaller

What can this theory tell us about the magnetic field perpendicular wavenumbers and cause HR to decrease.
strength necessary to affect collapse? Let us consider When H9 gets smaller, the collapse rate can change
a two-dimensional Gaussian wave packet sign, which means collapse ma' be prevented. When

(Ek)Vexkx- (&x
2

)-(kv)J. 1) this occurs, our numerical solutions show that other
nonadiabatic wave interactions, such as iarametric in-

We ind tstability, take place, and the virial thernemi no longer
[I Ak2 

, 
1-2 (12 applies. These interactions seem to lead ultimately to

k,+ +k 3k . . a geometry in which collapse can occur (Ior vxample,

When there is no magnetic field, the condition for col- by cascade down to a "condesate".

lapse is ) 2 and A 
< 0. For the two-dimensional wave These points are well demonstrated in the initial val-
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ue simulations. In the case of no magnetic field, the dispersion of an unstable wave exceeds the thermal dis-
evaluation of A gives persion

A -- 0.6x 10. . (17) Q sins ,z k. (19)

This rate of collapse remains constant as long as the These effects are geometric. 'i-1 ' 5

collapse is abiabatic. In the other case, when the mag- The new behavior we have just described also depends
netic field is such that 12 r0,1, the magnetic term is upon the energy W, according to Eq. (15). The fact that

2Ha,'N 8 X 10"5 . (1 8a) magnetic effects scale with W is important to the type-

The rate of collapse is proportional to II problem, is we discuss in the next section.

A-2H, N=-0.6xO05 . (18b) V. EFFECT OF MAGNETIC FIELD IN TYPE-Ill

This has the same numerical value as (17) because the BURST LANGMUIR TURBULENCE

Ha term contained in A is explicitly subtracted out. The connection between the initial value problem we
Therefore, collapse can begin, even when the magnetic have solved here and the beam-driven type-IU problem
pressure is relatively large. Numerical simulation has been stated in our previous work.6 The role of the
shows that subsequently 2HB/N gets smaller. We show beam is to "prepare" the Langmuir wave packets into a
the behavior of 2MBiN during adiabatic collapse for dif- state (given by our initial value data) which then passes
ferent values of the magnetic field in Table I. For over into a collapse, and decouples from the beam.
some cases (in particular, when = 0.1) there is a sig- Recent dynamic models" in which the broadband punp
nificant decrease in 2 HB, N, enough to make A - 2HB,'N is allowed to grow exponentially due to the interaction
positive. This effect is observed empirically to occur with a type-Ill electron stream at the rate 7 w, -10-1.
when the magnetic energy is greater than the nonlinear showthat the pump saturates atalevelwhere(35 = 10- '.

interaction energy, as given in Eq. (15) for a Gaussian Also, an experimental upper bound on the mean solar
wave packet. magnetic field at 0.5 a.u. is found to be Q2 -0.01.1: To

We can construct the following scenario for magnetic make contact with the discussion given here and the

collapse of Langmuir waves. When the condition (15) type-III problem, we repeat the initial value simulations

is satisfied, the collapse transverse to the B field is for Q= 0.01andtwovaluesof\li0. 1.0 < 0-'and1.0/l0 - .

inhibited. The transverse dimensions of the packets The resulting collapsing wave packets are shown in

remain the same. However, the longitudinal dimension Figs. 3(a) and 3(b). When 00 = 1.0 40' JFig. 3(a)),

becomes smaller because nonlinear self-focusing still there is no distortion of the collapsing wave packet.

occurs along the direction of B.. The collapse rate is Magnetic effects are observable for this (Iii only when Q

slower than the case S2 = 0. Eventually, parametric in- 0.03. In the case when (IV) = 1.0 x 10', which is per-

stability (induced scatter off ions) occurs to produce a haps more relevant to the type-HI problem [Fig. 3(b)],

new k-space configuration. Such instabilities will be the collapsing wave packets are elongated because of the

very intense because the background level of the un- magnetic field.

stable modes is enhanced during the longitudinal con- The result is consistent with the empirical scaling of
traction of the wave packets. Since the k-space scatter
is principally in the B,, direction, the real space wave
packets become increasingly elongated in the trans- Ly Ly
verse direction. The new configuration produces pan-
cake-shaped wave packets which can collapse in both 3
directions. Although our simulations cannot continue 2

beyond this point, the results of Krasnosel'skikh and
Sotnikovl ° show that as collapse proceeds to dimensions 4 3

such that Ak,/kD.: Q, the wave packet tends to become 2

symmetric. Q1

The magnetic effects on parametric instability do not 2
depend on pump energy, but occur when the magnetic

TABLE I. 2tl 5/N vs time for different values of Ql.

140t U = 0.01 12 = 0.05 Q = 0.075 2 = 0.10

0.14 i0
'  

0.84 x10
"
' 2.7x10 - '  6.1 x10-' 8..'l)10-5

0.27 0.85 2.7 5.9 8.1 Lx 0

0.41 0.89 2.6 5.7 8.0 0' I b P
0.55 0.99 2.6 5.3 7.5
0.69 1.4 2.7 4.8 7.2 FIG. 3. Contours of equal Langmuir field modulus when 1
0.8.1 2.8 4.2 7.1 0 0. 01 for two values of initial energy; (a) (W\ 1.0 x Io -4 (as

0.96 .1.8 7.0 In Fig. 1) at time ,t - 0.78×105 and (b) (W = I.1oxio
-  

at

1.1 6.7 time ,*t . 5.7 x 105. The magnetic field has more effect on

2.1 5.6 ease (b). Contours, 1, 2, :1, and 4 correspond to W 0.3
_xl 4, ~ 1.0 10- 4 , 5.Ox 104, and 10.Ox10-4.
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ABSTRACT

Parametric instabilities in a w\eakly magnetized plasma are discussed. The results are applied to
waves excited b\ electron streams which travel outward from the Sun along solar-wind magnetic field
lines, as in a type III solar radio burst.

Subjctw heahnys: hydromagnetics - instabilities plasmas Sun: radio radiation

I. IN IROlt( lON

Intense waves in plasmas are known to cause p;1i ametric instabilities, resulting in the transfer of energx from the
intense wave to other waves: for a revieA see Nishikawa eta/. (1976). An important astrophysical phenomenon
involving such intense waves is the type II solar radio burst, involving a stream of electrons wvhich travels outward
from the Sun along solar %ind magnetic field lines: for rcvicws, see Nicholson et al. (1978), Smith and Nicholson
1198)). and Goldstein. Smith. and Papadopoulos 1980). There has been a great deal of work involving the application
of parametric instability theorv to type III solar radio bursts: see Papad( poulos. (ioldstein. and Smith ( 1974). Bardwell
and Goldman (1976). Smith. Goldstein, and Papadopoulos (1976. 1979). Nicholson c al. (1978). Goldman and
Nicholson (1978). Nicholson and (joldman (1978). and references therein.

There is a substantial bod, of literature concerning parametric instabilities in a magnetized plasma: see. e.g.. Kaw
(197,). Porkolab and Goldman (1976). Kaufman and Stenflo (1975). Sanuki and Schmidt (1477). and I)vsthe and
Pecseli (1978). Nevertheless. previous applications of parametric instability theor\ to type Ill bursts have not treated
magnetic field effects svstematicall,. (See, however, a qualitative discussion in Nicholson cr al. 1978 Also see Freund
and Papadopoulos 1980 for a treatment of some, but not all, magnetic field effects.) This paper represents a step in the
direction of a proper inclusion of the effects of magnetic field on wave evolution during type III bursts. It is a direct
generalization of the earlier work of Bardwell and (ioldman (1976).

i. PARAMFIRt( INSIABtIttIFS

An electron stream traveling through a background plasma gives rise to Langmuir waves (high frequenc electron
plasma waves with frequency near the local electron plasma frequency) through the well known beam-plasma
instabilit, As a first approximation, the spectrum of stream-excited Langmuir waves can be represented by a single
large-amplitude monochromatic wave. As discussed in detail b.% Bardwell and Goldman ( 1976), this is in many respects
not a very good approximation, but it allows analytic progress, the results of which may have important implications
for the true situation.

Our theoretical model thus consists of an intense single monochromatic Langmuir wave (the "pump' \ave) traveling
along a uniform background magnetic field B,, in an infinite, homogeneous plasma. The electric field of this intense
\ase is given b

E( r.) 5i ., cos(A,~ a,, h,,,. (I I

\%here is a real constant, and .i is the magnetic field direction. Even though E is an intense wa\c, we assume that it ts
still weak enough that it propagates as a linear wave and satisfies the linear Langmuir dispersion relation

, 3 12)

where w is the electron plasma frequency. , 4int,.c" m : the average electron densit\ is p7,,: the electronic charge
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has magnitude e: the electron mass is nt the thermal speed t, ( I , .and the electron temperature T has units
of energx so that Boltzmann's constant does not appear explicitl\.

In accordance with standard parametric instability theor,, we suppose that high frequency and low freqnc,
fluctuations in the plasma are coupled together bv the pump wave and grow, exponentially. In general. the coupling
involves the pump wave, a low frequency wave characterized by a complex frequenc w and wavenumber A. and two
high frequency waves characterized by the frequencies and wavenumbers (wi, w. k,, - k) and t 0,, -w,, k,, -k ). For
simplicity, "e assume throughout this paper that all waves arc longitudinal, having electric fields parallel to their
wavenumbers. The possibility of electromagnetic decay waves is briefly discussed in § IV. The low frequency wave is
therefore characterized by an electric field E, of the form

E, ( r, t ) i /exp( - t t 4 k "r) < i *kexp(t *t- k r). (3)

while the high frequenc electric fields are

1, (r,r) i k ,exp[ -t( w, -w )t- if k, +-- )-r] expf.'(w, -- w*)t- lk, -k )-r]. (4)

and

E (r. t k exp[-to-,, ,- w1t-i(A-k ).r]"-4: *k exp[,i( w-)t -t(k,,-k)r], (51

here k . are unit vectors in the k,, A directions. The relation among the four different w ave vectors is shown in
Figure I. While Figure I is drawn in the A ,4 plane. all figures in this paper can be rotated around the A, axis to
obtain a fully three-dimensional picture.

The high frequenct and low frequency modes couple together to produce new norma modes described b% the
dispersion relation:

X,( w.k) X,!/k) =- 4- k, A-
I si: (e.,,k,+) r ,(w,,- e,,7j A " (6)

where the angular factors are

M A- ,k . C ')

the ekectron Debye length X, t- . w. and the dimensionless energy density

i,=a "' ,.(8)

Kaw (1976) uses an equation similar to (6) to study instabilities of electrostatic waves in a magnetized plasma, but with
a dipole pump. [The reader may recall that in studying linear longitudinal waves, one w\rites Poisson's equation

" .4rp as iA( I , 4 x, )E 0, where the electron susceptibility X, is proportiona to that portion of the charge

density p due to electron motion and where the ion (in this paper, proton) susceptibility x, is proportional to that

k
0+k

_____ -o- (B)
ken 0 p

-k

I( 1 Retiotn anione the four " a'csectors nxotoed in aI pir.itr~ :i hii
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portion of the charge density p due to ion motion. The combination F - x X is called the linear dielectric

function, and the dispersion relation for the uave involved is contained in the expression i - 0. It is this dielectric
function F which appears twice on the right side of (6).] In the next two sections we evaluate the dispersion relation (6)
in the unmagnetized ca.se.

I1 . t A~iN1 Ill11l) ( .. SI

We first solve the dispersion relation (6) neglecting the background ,magnetic field, with parameters rough
corresponding to a typical type III solar radio burst at a position one-third of a solar radius above the Sun's surface.
These are (Bardwell and (oldman 1976): n,, - l0 ciri T T 140 V. A,,A =0.05. and W., = 10 , In the
unmagnettzcd limit, we take the dielectnc function needed on the right side of (6) from fluid theory (Krall and
Tnvelpiece 1972)

A_ ,_wk.-_-k) " 2 3l A 'A, 6 A'-,,, A, (9)

where throughout this paper w <<. w ,,, and w,, w,.

For the low frequency susceptibilities needed on the left-hand side of (6). we use the results of kinetic theor., as has
previously been done by Bardwell (1976). This is somewhat more accurate than the fluid model employed by Bardwell
and Goldman (1976) especially in the present case of equal electron and ion temperatures. The results of the fluid and
kinetic approaches are in quite good qualitative agreement, and differ quantitatively only bx factors of less than 2. The
kinetic susceptibilities for species s are (Montgomery 19-11

xAX w, kZ( )]. (10)

where

2- -Au,

with t, the thermal speed of species s and Z the plasma dispersion function (Fried and Conti 1961) which arises
because the background electron and ion distribution functions have been taken to be Maxwellian.

The dielectric function (9) and the susceptibilities ) 10) are inserted in the dispersion relation (6) which is then solved
numerically to yield the complex frequency w(k). The imaginary part of this frequency is then plotted as a function
not of k. but rather as a function of the Langmuir wave vector. k 1 -,, -k. Figure 2 shows the resulting contours of
constant growth rate. This two-dimensional contour plot can be rotated about the k-,( B) axis to yield a fully
three-dimensional contour plot. Figure 2 is in agreement with the corresponding figure in Bardwell and Goldman
(1976). As discussed in detail by Bardwell and Goldman (1976). there are three distinct regimes of instability: these are

SM MS
_k

L

SM' SMI

Fi(i. 2. Solution to the dispersion relation (61 in the unmagnetized ca:.e; the contours represent the miaginar-, part of the frequenc, the
growth rate) as a function of two-dimensional Langmiiir ,aenumher k k,, k This figure can he rotated about the A, 1 axis to obtain a
fully three-dimensional picture. The contour labeled I represents a growth rate w, w, 10 , while the contour labeled 10 represents a
growth rate w,/w, - 10 The parameters are those of § Ill.
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labeled PD1 (parametric decas instabilit, ). SMI (stimulated modulational irstabilit,). and OTS (oscillating two-stream
instabdit, i The purely growing modes we identifx as the OTS are confined to the small region of ,-space \kith k ± k,
and A A. This should not be confused tih the OTS described in Papadopoulos. (oldstein. and Smith 11974) and
Smith. (ioldstein. and Papadopoulos 1979. -,hich occurs in the large amplitude limit such that H1, ;- I01/,AX ): (see
discussion in § V of this parer). The maximum grow, th rate ,c in each of the three regimes is close to w , 1.3 I)0 '
in the present case. The propervs of these three regines in the unmagnetized ca,e ha\e been re ievted b*s Bard,,ell and
(Goldman 11976, in the n ,t section we consider the modification of these three regimes in the weaklv magnetized
situation.

1\,. \.\ K1 ) N1 \(,\I'. 11/11. ( .\SI

In this section we consider the modification of the previous results in the presence of a wcak magnetic field. In this
paper "weak'" means that the clectron gyrofrequenc\ .2, (E eB,, nic ( is the speed of light) is much less than the
electron plasma frequenc.\ w, For example, with the solar corona parameters of the previous section and a reasonable
magnetic field strength of 2.5 gauss, we have Q w, -0.1. Note that while the magnetic field is wteak in the sense ste
have described, the magnetic field energy densitx for the present parameters exceeds the kinetic energ\ density of the
background electrons (i.e.. this is a lo" -# plasma).

The magnetic field affects both the high frequency and the low frequency wave motions. For the high frequenc,
longitudinal taves,. the electrons feel a rXB force in addition to an electric field force. and the dielectric function
becomes ((i inzburg 1964)

k Ak-AL-_ 3k -6 I) ' , (12)

which must be used on the right-hand side of the dispersion relation (6).
There are also magnetic field effects on the low\ frequency wave motions. For heuristic purposes, suppose we ignore

the strong ion Landau damping of ion acoustic waves in an equal temperature plasma and use the dispersion relation
w Ai, to estimate a typical ion-acoustic frequency. With the sound speed c, t(T 'mi )I : and a typical low frequency
waxenumber kX -0.02. we have -to 4 x 10 '. The ion gyrofrequency 2, - 5 x 10 'w,. and the ion (proton)
plasma frequency is w,, -0. 0 2 w,. Thus. the frequency ordering of interest is S2. << W << 2, < <(<t.

For most of the wavenumbers k in Figure 2. the product of the ion gyroradius p.. with the low-frequency
wavenumber. k k,, -k' , is substantially greater than unity. We find that the modification of the Iow-frequency ion
susceptibility due to a magnetic field is insignificant for most of the wavenumbers in this problem. The exception is the
OTS. Along the dashed line labeled A in Figure 2, is purely imaginary, and at maximum growth rate w:, iw, .0
10 <0,/w,. and kp, - 1. We shall find that the OTS branch is substantially suppressed. but we attribute this to the
low frequency effect, on the electrons, not to Ap, - I. The magnetic effects on the low-frequency ion motion do not
seem to be important because the results are the same whether they are included in the calculation or not.

As for the electrons, the fact that IwI << R, (and typically k, p, << 1. where p, is the electron gyroradius) means that
the low-frequency electron motion is indeed strongly magnetized. In other words, electrons are not :free to follow low
frequency motions across the field lines, but rather they begin an EX B, drift when subjected to low-frequency electric
fields perpendicular to the field lines. Along the magnetic field lines the electrons are perfectly free to move, like beads
on a wire. As discussed in somewhat more detail by Nicholson el al. (1978), the net result of these parallel and
perpendicular effects is that for angles (- k ,/k, ) which are greater than (m ,)I 2 from perpendicular to B,,, there
is no effect of the magnetic field on the low frequency wave motions (, is the proton mass). Only in the small range of
angles Jk,/k <(m,./m,)' 2 are the electron motions inhibited greatly and the low frequency wave properties
modified. As we shall see, the instability giowth rates in this small range of angles can be severely reduced because of
the inhibition of electron motion across field lines.

Let us perform a simple analytic calculation to illustrate one case of a reduction in growth rate due to the magnetic
field. We focus our attention on the dashed line labeled A in Figure 2. Along this line where k'Ak, -- 0. the instabilit, is
purely growing with w=iw,. Now suppose we have a plasma with cold ions and a growth rate whose magnitude is
small. The unmagnetized fluid susceptibility for species s is X, W, 2/(w k t-, 2). which means we can ignore the
ion susceptibility term on the left-hand side of the dispersion relation (6). Inserting the electron susceptibility
x,. Ilk h,. 2, the unmagnetized dielectric function (9), and the assumption wto =1w, into the dispersion relation (6). we
find

9A k - : 4,\, (13)
4'
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whereupon the highest growth rate is

i,. t , i ,14)

which occurs at

/,X 1Wtl 12)' :. 1151

No%. hov. is this result modified %hen the magnetic field is included'.' Continuing to ignore the ions in the lovN
frequency susceptibilities on the left-hand side of (6). there are two places where magnetic field effects enter. The first
is in the high frequency dielectric function, where (12) replaces (9). One may think of the change as replacing 3A ' , X
in (9) b, -- 3A, - (p. 1-)2 w, ' in (12). A., both terms are negative, this effect is as if the "axenumher in (9)
%%ere increased: the result is merel, a shift in the growth rate curve to smaller waenumbers wiith no change in the
ma-ximum gro%%,th rate obtainable. This effect was first suggested to us b. Smith and Ts tovich (1977).

The second place where the magnetic field effect enters is in the low frequency electron susceptibilit\. I-or the case
under discussion with A-R, 0, the unmagnetized electron susceptibility. (A A) is replaced b\ X, ;Z= w ,  12,

corresponding to polarization drift: and. neglecting for simplicity the high frequency magnetic effect of the previous
paragraph. the dispersion relation (6) yields (without assuming w purely imaginary)

k 4 3 4 . (16)

42 4 4 __8 4 (

which does not predict instability at all for the parameters of the present paper. This crude calculation exhibits the
reduction in the growth rate when the low frcqucncy mode propagates within an angle of ( m, ,' ni 2 with the
perpendicular to the magnetic field.

We emphasize that this great reduction in growth rate occurs only for the branch marked OTS in Figure 2. For the
other branches marked PDI and SMI in Figure 2. the low frequency mode has an angle greater than (i m,, 2,) to the
perpendicular to the magnetic field, and propagates as if the medium were unmagnetized.

To make these remarks rigorous, we numerically solve the dispersion relation (6) with the parameters alread\
mentioned (U.,'w, =0.1). For the low frequenc elcctron and ion susceptibilities we use the magnetized kinetic version
which is given by (Bekefi 1966)

X,( u.k +~ II -iexp( -a, ) ja )Z I,,(a (17)

where " =_w/21 'k,t,. a, =k ,-P, and the l, are modified Bessel functions. For the high frequency dielectric
functions we use the fluid versions (12). The solution of the instability dispersion relation (6) is shown in Figure 3.
Comparing this figure to Figure 2, we notice several effects of the magnetic field. The most dramatic effect is the
disappearance of the OTS branch, in agreement with the crude analy tic calculation. The other dramatic effect is a
squeezing of the contours in the * -direction for both the PDI and SMI branches. We ascribe this effect almost totally to
the magnetic term in the high frequency dielectric function (12).

It is important to note that despite the squeezing of the contours in the direction perpendicular to the magnetic field.
the vertical extent of the region of fastest growth (the contours labeled 10) is only slightly affected by the magnetic

Ii(, S(lution (f the dispersion rcldition (( fl i the Acakk, ingneti 'aw All p inrl Ir, .and 'nliolr ,i t' l, arc file ic ,la, in I
2. %,ith S2, ,. ( 1
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field. This is true for both the SMI and the PD! branches: the maximum perpendicular extent of the -10"" contour is
reduced b, only 105i of its unmagnetized value in each case.

Returning to the OTS branch, we have seen in Figure 2 that in the unmagnetized case it has as large a growth rate as
an- other branch, while when l,. - 0.1 (Fig. 3) it has completely disappeared. In order to explore the nature of this
transition, we show in Figure 4 curves of growth rate %crsus perpendicular wavenumber A, , for various values of
12 , . with A, - 0. The horizontal axis of this figure should be identified with the dashed line labeled .4 in Figure 2.
We see that even for the smil value ./,. -0.005, the instability has almost disappeared. The OTS branch is \crY
sensitive to the presence of a weak magnetic field: the main reason for this is the resistance of the magnetic field to
motion of electrons across field lines.

In this paper we have considered only longitudinal decay waves. There also exists a host of potential electromagnetic
decay products. Although we have not performed a systematic numerical study of the electromagnetic decay
possibilities, we have considered many specific examples within the context of the present parameters. In every case, we
find growth rates far lower than the maximum growth rates of the SMI and PDI branches. Of course, in a particular
region of wavenumber space, an electromagnetic instability can have the largest growth rate. For example, when the
OTS instability is reduced to zero growth rate by the weak magnetic field, the region of wavenumber space which
formerly contained the OTS can now support a parametric instability involving a magnetosonic wave. Whereas the
low-frequency electron motion across field lines is inhibited b, the magnetic field, a magnetosonic wave moves the field
lines, thus allowing the electrons to move and enhancing the tendency toward instability. Our calculations indicate.
however, that the resulting growth rate is very much smaller than the growth rates of the PDI and SMI branches in the
weakly magnetized case. Thus, we feel that there is no indication that electromagnetic effects would change the overall
growth rate picture in the weakly magnetized case. The effort required to produce a comprehensive contour plot such
as Figures 2 and 3 including all electromagnetic effects does not seem to be warranted.

This concludes our detailed calculations. All of the results of this section agree with the qualitative predictions of
Nicholson et aL. (1978).' In the next section we discuss the implications of these results for parametric instabilities and
soliton collapse associated with type Ill solar radio bursts.

'in § IV of thi , reference, the expression A p, S(1 in tie ix th paragraph should he replaicd b\, the cxprcssion A p 20 E'.quation (I 31
,hould read

" A - , ItI (A , A,)'( - ,,., I)
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V. SUM.ARY ANt) )tS( ( SSION

In this section we summariLe the preceding results and discuss the implications of these results for the iheors of tspc

Ill solar radio bursts.
In the unmagnetized version, the parametric instabilities to which an intense nonochro|natic Langinuir \ha\e is

subject consist of three kinds: the OTS. PlI. and SMI. The maximum growth rates in each branch are comparable.
One of these branches, the OTS. is very sensitive to the addition of a %%eak magnetic field. For the parameters of the
present paper, this branch is virtually wiped out for a magnetic field such that 2, co, ([05. The other to branches.
the PDI and the SMI. are very insensitive to the addition of a weak magnetic field This is true both for the mlaxiluml
growth rate in each branch, and for the extent of each branch in the wasenumber direction perpendicular ito the
direction of the magnetic field.

We conclude that to the extent that the stream-excited Langmuir \ka\es of a type III burst are nionochronatic. tile
linear parametric instabilities to which these waves are subject are not one-dimensional in nature The presence of a
weak magnetic field does not change the overall gro~vth rate picture. The detailed type III l.angmucr sa\c scenarios of
earlier work (Bardwell and Goldman 1976: Nicholson cti al. 1978) need not be modified.

This strong conclusion must, of course, be tempered b\ repeating the observation that the Txpe Ill stream-excited
Langmuir waves are not monochromatic, but have a spread of \avenumbers along the magnetic field and across the
magnetic field. No satisfactory general theory of parametric instabilities due to a broad-band pump ia\e presentl\
exists even in the unmagnetized case, although some results ha\e been obtained (Bardwell and (Goldnian 1976:
Thomsmn and Karush 1974: Smith, (ioldstein. and Papadopoulos 1979). The frequent spread in a broad-band pump
will tend to disorder the coherent growth of the modes in Figures 2 or 3. Hlowever, in a statistical sense, those modes
may still experience instability. In numerical simulations, parametric wave growth is still observed with a broad-band
pump (Nicholson e/al 1978).

Broad-band effects can often speed the nonlinear proeesses. as in the case that tile regions of constructive
interference of Langmuir waves in real space undergo a direct collapse. In the low solar corona, where A,, -( m m )' '
the wave packets have a group speed larger than the ion-acoustic speed. and collapse cannot occur sv'thout some
scattering. perhaps by the instabilities considered in this paper. For AU. when , , -)01. the .%avc packets can
collapse directly, thus bypassing the stage of parametric instability (Nicholson et oil. 1978).

In recent papers putting forth a theory of type IfI radio bursts. Smith. Goldstein. and Papadopoulos 11979). and
(ioldstein, Smith. and Papadopoulos (1979) study rate equations in which a linear instability plas a central role in the
transfer of energy out of resonance with the type Ill electron stream. That instabilitv, which the\ refer to as the
oscillating two-stream instability (OTSI). is supposed to occur for A> k,. The fact that we do not find such an
instability in our analysis deserves further comment.

The geometry of the purely growing instability is determined bv the values of the pump energ, and "a'enumber, W$;,
and k,. If f, 10( A,.)-, as in the present paper. then the instability will havea ,,, and have a maximum growthrate perpendicular to the pump wave vector. On the other hand, with I, >

" l(!AA , then A> A,. and the instabilit,
has maximum growth rate along the direction of the pump wavenumber A,, as in Smith et at. Nonetheless, both
instabilities rightly have been called oscillating two-stream instabilities, and the failure to distinguish between these two
cases has undoubtedly caused some confusion.

In either case, the OTSI involves two Langmuir daughter waves, with wavenumber k,, , k shifted up and down
relative to the pump wavenumber, A,,. The instability occurs when the upshiftcd and downshifted 5ayes beat with tihe
pump wave at nearly the same frequeney. The frequency mismatch, or the beat freqtuency. 8 . . for thle two x~aves is

. (A- ' .)AA 1,. + 3( kk,,X ) , .

In the dipole limit (a). A >>A,, both daughter waves have nearly the same mismatch because of the small wxa\enuimberof the pump wave. A,,. The threshold for instability is J~~i > 3t// A " A Smith. (ioldstein. and Papadopoulos 1 979).

Because k, this threshold condition implies ,O 3(A,,X ,. In the other limit (h). AA,,. the mismatch
frequencies are made equal when k _L k,, (Bardwell and (6oldman 1976). Tile fastest growing 5'a~cnumnber for this
instability is given by equation (15). Since the wavenumber A, is assunied Ito be nmch less than A,,,. this requires

14 t<2(AA, ,.V1.

Hence we arrive at the important conclusion that as the pump strength tl,, increases, the OTSI goes from case (h) to
case (ai). The character of this instability is described in detail in Bardwell's Ph.). thesis (1976). Although the effect of
the magnetic field is to suppress completely the OTSI in the small A limit, in the other limit, A A ,, the magnetic field
has important. but less dra.tic effects (Freund and Papadopoulos 1980)

After the completion of this work (Weatherall, (ioldman. anti Nicholson 1978). we became a\ arc of the related work
by Freund and Papadopoulos (1980) which examines magnetic field effects on type Ill generated parametric instability

-.. .. _J
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at ,AU for large values of pump energ. Fit' I) s,10 -. Because R', theA ( stud\ a rcgime complementars
to ours. However, they ignore the effect of the magnetic field on the low frequenc, motions. This is not likel, to affect
their results, since they do not consider waves perpendicular to the magnetic field where we find the effect important.
Generallv, their work agrees with ours in finding the decay branch to be quite insensitive to a weak magnetic field.
except for a shift of unstable wave vectors to smaller perpendicular wavenumbers.

To conclude, the results of the present paper are applicable in the regime [case ( h)] of relatively low pump energies
(K, = 10 " and parameters appropriate to a distance of one-third of a solar radius above the Sun's surface). The
complementaz-v regime lease (a)) of relatively high pump energies has been considered in the work of Smith. Goldstein.
and Papadopoulos (1979). (ioldstein, Smith, and Papadopoulos (1979). and Freund and Papadopoulos (1980). Which
of these regimes is t::ore appropriate will depend upon the detailed parameters of an individual type Ill solar radio
burst. As pointed out by Smith, (ioldstein, and Papadopoulos (1 979), these parameters can vary over wide ranges from
burst to burst.
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The tvolution of Langmuir waves predicted by the beam-driven Lakharo% equations is studied numericallN
with high resolution in one and two dimensions, for parameters appropriate to tispe III slar radii bursts at
0.5 au. It is found that collapse is preceded by momentum transfer i' ioni-aciustic quasitiodes es en in thle
absence of a weak solar magnetic field. The early evolution is similar in ine and mo. dimrensions A ter.
momentum condensate forms in both cases, but its subsequent behasior differs in tie dimension aiid icv.

dimensions. The corresponding real-space wave packets collapse rapidlN intt wo dinictisiots. but noise a,
slowly growing solitons in one dimension. Detailed cot'" irisons are miade v. oh (other i-ditsol
models of-strong" Langmuir turbulence associated with type Ill hurst-s

1. INTRODUCTION Zakharov equaltions is tile induced scea crin.,- of a5 1aii, -

In principle, there are two classes of noninear iurwv A uhalinaosi usnoeit

phenomena which can saturate Langnsuir waves driven a lo~lier wave.- rThe scatter(ed wave may be backward

unstable by a warnm ("bunmp-on -tail") electron beam; rfradltreiint ~ is, u taw~ oe
wav-patice iteactonsandwav-wve nteactons mnlsentuns to thIe qoas iniode lin t ise process. It canl le
wave-patice iterctins tsdwav -wve nteactjois - shsownt that scattering off such iou -acoustic quasimiodes

Its the formser, the back reaction of the resonanst is rouglsly equivalenst- to scattering oft discrete ionls
'beami-modes" on the beanm electronss catl lead to pla- (wihr,.qrea rct qail frieiodsrbu
teau formsation. This is treated by various versionss of (wshreuesaiteceulio rteoiditiu-

tioni funic tion).- Ansot he r isa ie for tile latteri pliettoiste -
quasilinear thseory. lIt the case of wave-wave iisterac- nois"iltcaLnduaipi.,oftn,"Aleie
tiotns energy is spread froni tfie resontant beam uttiodes oneisomtescldaprnercdcyiit-
to risoisesosait ItIsodes by stimiulated scatterinsg off blite. is soistt iises cll ted a lrais ite clideay st
backgrounid miss or ion-acoustic waves, 2aisd by non-\ e hl s alteetrii itrcsigal
lintear self -focusuisg effects such as miodulatiotsal lin- sl(ew aeasn qa lcrnadintmea

stability 2
-4 atsd collapse .5- The so-called 'Laktsarov ti 's

eqluations' call lie used to tre at all of these wave-wave Itnduced suatieritig off lolls forms tile basis for what is
interactions sitsiuitaite'usl* v, lIt tlse presenst paper, we somtetinmes called -weak turb~uleince" lheo'v . A Lgroup
shsall be coisceried with the insterplay between tle %-a ri- if untstable ti largLe amsplituode waves. ceitered iarrow -
ous wave -wave istertct iois, and its signsificansce for lv arouind a wave vector.. k, unsdergoes a cascade ot
tile Lasgisuir turbulence associated with type Ill solar scatters toward lower wavesuisibers k, - ,,. it there
radio enmissionts. It is entoughs linear dissipatioin. ilse cascade s1t1ps. it

lit the Zaktsaro' '.,,,1ations, iow -frequescy ions-acous- steady' state develops, aisd tile intsatility saturates.

tic waves are dlri,o,: by the potsderon'r live force as - Whsen the phlases of tie various ii des at-e raitdoiln

socitated with Laigi i r waves. This is described by a this is anl example of sat or'alli by it weak tIirbhelitue

hydrodynamsic equatiots for tlse loA -frequenscy deissity. process.
iii whiclh the ponderiotive force acts as a source If there is ot eiiou!i liteal dlissipationti, ectigt2 itt-
termss. Thse resultinig msodulationss lit the denssity cause cuiuaeatsryiilI atitler iioaciidi-

nsonlinear refraction ius the Latgittuir waves. This is uu Iaeatcr s l.wantibS11'0t"Cl.121

described lby a nsonlinear Latiittuir wave equations, in st. hl h odnas a lol nr Iea

whsich we also empl~oy the approxinmations of at purely cie waeito ts t-sr w it, Ik) itodual total OIteat 10iii-h

electrostatic high -frequeticy field hlay tug a slowly vary - erwavich i ur he , Itasi s lo' tti lutultice'l teirjio

tug ensvelope. For our puLrposes. therefore, the Zak- llf sIl ai o,"~ol. ilblfc"ter,%i

tsarov equations are two coupled tnoinliisear plartial dlt 'f*;ts process thas a simpille iilleipretaiiloli ill coilrdi -
ferei a I equaltins for' the low -frequeiscy (tots) detisit n, ate space. IhL wave ptackets associated with the coil -

and or te Lagnii eveloe.leiisate cause dleisit y cav ities iii (hevelopie due to poit

atsdbr he atsniui etvelpe.deroitive fortc. I'lie resulti tug sell -tocusiiig leadIs it)

fit the cases oIf interest to us, thie electron and( tots tile spatial collapse -- of the Ijackels to dImsitiiisi
tetmiperatu res are assumsed to be equal. This mseatns which tiayN be oti (i e ,irde r of sev eral Dehivu IcletiIs -

iist-acousttc waves ate heavily datssped by ion I atsdau The FOut1-ter1 cit1)itipiteIS oit such aI iiarrlov. ssas packet
tlaniping . and should. msore psroperly , be called iots- now see ttea%\ L andtau datspiiii; bcaullse k is Iii theu
acisustic quasisiode. We thet etote itnsert a strotig oide, (It tile lDeh\ wave~liititer k.j_ letilce , by this

pttenomtenological elaniping Ito the tots-acoustic equa- ci i'111tItoS route, a steady-slate satut-altionts itliv oii-
tion. Otse if tile notnlitiear eftects then constainied lit the otiai 1slatnlltv Isiav tie psossibile.
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\Ian aspects of (his sequence 0i pl'ocCsses ilre Still lapse was thought I be possible. a su ustantia i buiid-
quite controversial. However, the cascade-collapse up of scattered waves occurs at small wavenumbers.
sequence has been confirnied" by two-dimensional The observed collapse is associated with this "cunden-
numerical solutions to the Zakharov equations, for sate" of wave modes, rather than the beam - resonant
the case when the "puiiip' waves around k, are assumed modes. The interpretation is more in line with earli-
to have initial amplitudes much larger than the noise er ,r. pictures of cascade followed by collapse. How-
level of other modes. In these studies, the pump waves ever, there are additional unexpected nonlinear effects
were not driven by any linear instability, such as beani present, such as 1,)ng-tine phase coherence of wave
instability. We shall refer to such cases as undriven:' packets and a continual loss of momentum to ions. In
In the undriven cases studied, k0 was chosen to be addition, the final condensate is centered around zero
large enough so that many (back and forth) scatterings k, rather than the wavenumber associated with induced
were possible in the cascade. The condition for this is scatter (a result also found in Ref. 13).
k, (m M1) I2 k,, where m 'Al is the electron to ion We begin with a two-dimensional numerical solution
mass ratio. This condition is equivalent to the require- to the beam driven Zakharov equations for a case when
ment that the group velocity of the pump waves be much k0 k I ?, (n ) l /2 . The choice of physical parameters
larger than the ion-sound speed. is motivated by the type IlI problem at 0.5 a.u. The

In other' two-dimensional numerical studies with the qualitative behavior in this simulation is not different
Zakharov equations, a different mode of behavior was from previous studies, 8 but the improved time and spa-

observed for an undriven group of punp waves around tial resolution make it possible to follow the collapse
k on .11)'' , ku. When the initial energy density in the of the wave packets for longer times than before, and
undriven pump waves was made sufficiently large, a identify a migration of the Langmuir spectrum toward

direct collapse of the associated real space wave pack- smaller wavenumbers. The major point of this paper
ets occurred. Such direct collapse was enabled, in is that the depletion of the beam-resonant (pump) waves
principle, because the group velocity of the pump wave is due to scattering off ions, rather than collapse.
packets was less than the ion-acoustic speed, so the In order to support the interpretation of the results
nonlinearly refracting cavity of density could keep pace we solve the same Zakharov equations in one dimension.
with the packet. Direct collapse occurred even though The time scales and energy densities in one dimension
one final induced-scatter off ions was still kinematical- a'-e found to be comparable to the two-dimensional case
ly possible in the forward direction, due to the low during the early time evolution, even though collapse
value of k 0). is not seen. This means that the scattering instabilities

A theory for direct collapse of an initial undriven (which occur predominantly in one dimension) must
broadband pump was developed,' using the approxima- have a significant role in the saturation of the beam-
tion of adiabatic ions, in which particle pressure is plasma instability.

assumed to be balanced by ponderomotive force. The We give another solution in one dimension, repre-
theory predicted the collapse threshold pump energy senting the limit of adiabatic ions for which the Zak-
density, W = IE 12,'4itnO (in units of the background harov equations reduce to a nonlinear Schr6dinger
electron energy density nG), in terms of the pump equation. The purpose of this example is to demon-
bandwidth, Ak: Wt,= 48(4k)2 . This threshold condition strate the role of ions in the scattering of the Lang-
is approximately satisfied for the numerical studies muir pump waves to smaller k modes.
which showed undriven direct collapse (e.g., Fig. I of
Ref. 6), although the adiabatic approximation is not aferee ete h forthere ape tbe a difference between the further time development
strictly satisfied, due to momentum transfer to ions. in one and two dimensions. In one dimension we see

The further claim was made8 '6 that direct collapse real space solitons intensifying on the time scale of the
also occurs when beam-modes (centered about ko/kt beam growth rate, whereas in two dimensions the soli-
- 0.01) are driven by the weak electron beams associ- tons are collapsing unstably at a rate which is an order
ated with type III bursts at 0.5 a.u. The argument was of magnitude faster, for as long as we are able to fo1-
based on numerical integration of the Zakharov equa- low them. There are theoretical reasons" ' 15 to expect
tions which seemed to show 8 that the weakly driven collapse to depend strongly on dimensionality in cer-
beam modes grew to an energy density two or three tain limits, but this problem requires further numer-
times the collapse threshold, and that afterward direct ical study.
collapse occurred exactly as in the undriven problem. The plan of this paper is as follows: In Sec. II we
However, subsequent studiest 4  included a weak back- se p o tic pations as des : the iit we
,,.round solar magnetic field, and showed that direct sttPtebsceutosaddsrb h ntacrolapslar wasloedic feldow s cnty bd matiect conditions and boundary conditions, which are appro-co lla ps e w a s s lo w e d do w n s uffic ie nt y b y m ag ne tic r a e i th ty e I I p o l m t 0 . a u I S c . l .

effets s tha sustanial nducd satte offionweid preent ah twodensipoalm erical5 ouiont ofleffectsm so hatcubstantia irvnued dirett coffiose did we present a two-dimensional numerical solution of
have Iime to occur, and prevented direct collapse. The the Zakharov equation. Section IV is devoted to the
relevance of direct collapse for the physical conditions one-dimensional Zakharov equation for both the adia-
of the type III problem was therefore significantly di- batic and nonadiabatic cases. These examples servem inished. ai n oaibtccae.Teeeape ev

to clarify the roles of the various nonlinear processes
We seek to establish in this paper that even for non- identified in the two-dimensional solution. In Sec. V

magnetic conditions under which a driven direct col- we elaborate on the limitations of one-dinensional

393 Phys. Fluids. Vol. 25. No. 2, February 1982 Hafizi er al. 393



solutions to the Zakharov equations. Tile implications we present the history of the wave energy density dur-
of our results for various aspects of type Ill theory ing tile simulation whici. shows that the wave processes
are described in Sec. IV. Finally, in Sec. VII, we dis- contained in Eqs. (1) and (2) can effectively decouple
cuss how our work and conclusions differ from the the system from the beam. In Fig. I we plot two curves
one-dimensional statistical theory of Smith. Goldstein. which show the total energy density in tile system and
and Papadopoulosi '

,
7 

in the context of the type III tile energy density in tile beam-driven modes. It' is a
emission problem. dimensionless ratio, 'W '() 2'% 4,n,0T,. Ahere

(JE I2) denotes a spatial average of E(x) 
2
. Renieniber

II. EVOLUTION OF NONLINEAR LANGMUIR that the beam modes are being pumped throughout the
WAVES run at a constant rate. These modes grow Linearly at

The starting point in studying nonlinear Langniuir early times until they saturate at energyN It - t0
"
'.waves is Zakharov's equations At later times these pump modes experience a drastic

loss of energy due to nonlinear wave processes. The

kia, - iv, V')V E = V nE (1) rate of energ.y transfer to the plasma v .ves depends
- E upon tile term vE. With thL pump modes severely

, -V
2

)n =VjE2) depleted the energy input into all waves is practically

where E(x,t) =-Vc is the low frequency envelope of the cut off, leading to the saturation ot the total energy in
assumed longitudinal Langmuir field: EL(x,t)=E(xt) Langmuir waves. We are still not seeing a fully-de-
Xexp(-iwt) - c.c., and n is the perturbation on tile veloped steady-state turbulence, because we have not

background ion density. no. The units of time, length, included Langnuir wave dissipation. Note that the
density, and electric field in our dimensionless nota- total wave energy has a slight positive slope.) A major
tion are unanswered question is whether, given enough time and

accuracy, the energy grows to a significantly higher3[1]= 2 P7 mlevel.

3/1 kn /2 Let us examine, in detail, thie wave behavior at three

[x,.vJ=7 72 , , times t, t 2 , and f, as indicated in Fig. 1. The behavior

at these times is representative of the variety of ion-
[n]-q/(,,0 mi)n0 , linear phenomena observed in the simulation.

16_r ( _'61Tn T 1 /2 At time ,, we observe wave packets propagating at

(it i/k 3 0.025r, slightly less than the group velocity of the

beam resonant waves, ,, 3(k x)r' - 0.0331, as
where the plasma frequency is given by n.. 4nne

2 
,. shown in the sequence of pictures in Fig. 2(a). The

the electron Debye length is , - (T, inw2) and the time between frames is 0.07x 10'; ,-1, and the spatial
dimensionless ratio o () T, -T,) T.. The ratio of width of the frame is 3.7x 103 ),,. Therefore, a ther-
ion- to-electron mass is mi m, - 1836; 7" and T are mat electron traveling at speed '. will traverse the
the temperatures and ), and) j are the ratios of speci- horizontal length of the frame 18.5 times in the inter-
fic heats for the electron and ion gas. Although these val between frames. Because the grid is periodic. a
equations describe complicated wave-wave behavior, wave which exits one side of the grid will reappear oit
they do not include particle-wave effects except in tile the opposite side.
phenomenological damping terms. v, and v i .  Tile wave packet in Fig. 2(a) does not behave accord-

In order to simulate Langnuir wave phenomena dur-
ing type Ill solar radio bursts at 0.5 a.u., we solve 1o-4
Eqs. 1) and (2) by the split-step Fourier method on a
finite grid "''9 The computation is set up as follows. \W)
The beam unstable modes are centered at k 0 ., -0.011.
with a finite bandwidth hk. and ak, (x is parallel to the

beam and A,; t is in the transverse direction). The -
beam plasnia instability is simulated by transforming (w)P
Eq. (1) into k space and using a negative damping
rate.3'

20 
-v. woo - 10"

;
, for the appropriate k modes.

Other relevant parameters are: 7. - Tj =- 20 eV, w, 6

- 4x 105 sec'. i,=50 cm
"3 , 

N.- 470 cm, r- 2. Except
for the beam unstable modes, the plasma wave damping
is v, - 0; vt - 2kc. corresponding to heavily damped

ion-acoustic modes. Initially. all of the plasma wave f t t
modes are given some small, randomly phased ampli- 3

tude (noise). 4 5 6 7 8

TimE (-le 6

III. SIMULATION IN TWO DIMENSIONS

FtR;. t. I "nv'gv dnsit in i' punip i)-,sonaint noi t,s, (It , .

In our two-dimensional calculation, we use a 64 > 64 :1nd total encrKg dtnsil\ 0 ) dhiting the to, tinonsi,itl -I
point grid. with Ak, I ( 6)k, and ,.k, (I 2)4-). First, ilolmni.m ,f vtp') I'm I -11 41 - :1. ,.
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FIG. 2. Successive time snapshots of contours of constant electric field amplitude IEI in real (x-y) space during nonlinear phases
of type IlI Langmuir wave interaction. (a) coherent wave propagation near timet1; (b) decay instability near time t.; (c) Langmuir
collapse near time f3. Amplitude labels are in dimensionless units [F).

ing to the rules of linear waves. Because of thermal IY

dispersion, this wave packet should "disperse" on time

scales of
_(2 d~t. ' 2W - 2  -w

T- j)_IL _ 8X x 0 - (3) 2

where the width of the wave packet is about L =500 x,. (a)
Clearly, it persists longer than this time. The reason
is that nonlinear forces are very important. A cal- kY

culation shows that this wave packet, with central

amplitude, E 0 , is just at the threshold for collapse6

(for adiabatic ions in an infinite plasma):

- 48{- : .5 x0o (4
21rn(T, + T =) k "/ ' (4)

whereas

JEj
2 

2tTn(T,+ T,) -1.7x10-. 5)

For energy values near threshold, the collapse time
6

can be very long
I -U-f IE 11- E 1,2, W .1=3x 05u," (6)"I.. i

2 L2vn0 (T. + Ti) 0"~ of. 6

The k-space distribution of wave amplitude at time (c) I
ti, shown in Fig. 3(a), indicates that wave energy is
being transferred from the pump modes into neighbor-
ing modes in k space. This broadening in k space can
correspond to the nonlinear steepening of wave packets tim.s .n , rslofning collapse broadenin. O n. shm'ing th

in real space. Although we may be seeing the begin- parametric vx(il;aon of particular wave miotes, and ,i,) f.,
ning of a direct collapse, it is relatively slow, and showing the formation of a condensate. Contour labels indi.';d,
does not have time to develop. Part of the reason is relative amplitude. The rectangular tox shows th. limp deiar
the instability which affects the packets by the time t2. unstable) modes centered at kl, = (I. (if I.
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At time t", which marks the precipitous depletion of nearly stationary. Wave energy is distributed in a very
the pumip waves, there are discrete modes which have large region of k space, including backward traveling
enhanced amplitudes [see Fig. 3kb)j. These are iden- waves, as shown in Fig. 3(c).
tilied with mnodulational and scattering instabilities. Front the example given here. we canl conclude t hat
For example, induced scattering off ion-acoustic ~ cias fg'wn rabn upwvsde o

quaimoes s kow '~to ccu fo wveswit Lag- occur fast enough compared with the secondarN ar\muir wavenumiber and maximum growth rate etric instabilities excited. InI fact, the scattering d
k.,-kox, (4jmo, 27m,)'12 , cay) instability seemis to be very Important inI depletin~g

3d'V th)w. 7 ie pump modes. While the inclusion of collapse has
' 2 W. 6t ~been a prtnc ipal motivation for doing the calculat ion inI

These form uILas assume a monochromatic pumip.)I The two dimtensions , the scatter inc instability is predomi -
feature \we see tin Fig. 31,b) at kpN - 0.002 is due to this nait ly one -dimieisional. To find out how well a sitmpier.
instability. The observed growth rate of this mode, onle -dIniensional miodel can do ir., this problem. wAe re-
approximately 5 x 10- wo I is consistent with the lheo- peat the siniulat ion in) one dimntisioin.
retical growth r'ate ) when IV, - i*\ p- 10'. The insta-
bility growth lime is comparable to the collapse ltme IV. SIMULATION IN ONE DIMENSION
given tin Eq. (6).

For the same piarameteis. the one-dimiensional cal-
The two contours which are off the .% axis tin Fig,. culation uses a discrete si stem of 128) modes, withi

3(b). appear to be the niodulationally unstable waves three puny, niedes atid ak - k. 3. The results allowk a
studied by" Bardwelt. and Goldniani. We note that thet similar interpretation as It tfile pirex ious case. Durin,
beam -modes pumip these waves tin ai forward cone, the linear growth phase,. the pumip A aves are enhianced
rather than at ighl backward and forward wave vectors tin aniplitude , as shown III the-'I S space SpeCt rUItiI 1 ii H.
in one dimension, as suggested by S mith, Goldstein, 41a). At a later litime. file k space Speci rii has evol-
and Papadopoulos." The forward cone geomietry of the ved into that of Fig,. 4kb). Firsit, weu note tiai thie poimp
mlodulationial instability is only transformled into the modes. itnst ead of being of equal aimplit udes . hay% e Lde-

backward -forward geometry at much smaller lpuit veloped a peak ott the lower wkavenuutiher side. SeC Wd
waveniumbers (where the "di pole' approximnation is the pLItI~l M todes tive caused the antpitt ide ti adjacent
valid), or much la rger puniti energ.y denisitites. lII this nmodes to grow. This is stiilar to thle collapse - like
limit. aitohei' pseudonym tot' the niodulational itista- broadettitig also observed III two d~nteutS1ouis. Fitllt
bilitv becomes appropriate: the "oscillatintg two-streant tit(. broad feature tear the origin of k, space is appa -Iiiistabilit * .''.I- r' Teorv*- predicts the same grow th reiti and is dtue to tile scaitermti dca isailiP%.
rates for the iottulat ionally unstable waves as for the he ltletatfl decay tsaill bvinst at

waves Ahich have undergone indcuced scattering. rilils A i tt a h ecyls b i eot '

is ii accord with Fig-. 30)). 'rThe niodulattoitally tin- valent. thle tutmp modes deplete rapil. as sthown itIII

stafi I waves are pr ediled- ito occur at 1 , (it'i. 5. thle sait'ration of total eir\is at atot twice
12)' 1.6 ,. 10-'. aliso inI rough agreement with l'g. ttelvlgvFtiiFg 1frtito-iteiita ae
3(b). A Ittiogli tis is thle first tinte the forward conec Figure (3l a) shows thle etivelope wkaves ti real stave:
niudulatiottal itabiliiv has b~een founid to 1)0 excited at the tiie correspoidiig to tile dpletioni ot the pumpiti
by *a i broadbantd spect runt of beam -driven pumpII Modes. waves. Collapse is tlot occuIIring as it did ii tw\o it-
the Immnedtiate subseqtient evolution of the 1l~at'lntuIll itictistotis bilt a ittoduhatiotial interaCtIot)I' - "'is
waves appears to tie itOnt itated by the induced sc'atter begitutu ilig to prodtuce Shtuner tlngIi sea les. The cont-
decay) instability. ditioti for tit., process is It' \\t . here .11. is

A sequence oft wave packet configurat iotns in reail ttte wayetuiuter spiread III tilie Lattgnuir wvaves atnd "'is
space at ttiis same time f. is shown tin Fig . 21h). The atutbio re tiy tteiteo i.6a.ti
wave packet is now travel Ing with a nmeani gr, Ioup v eI - itiequa )lily is iii 14 arg ittaliv satisfied with It' - W N 10- andi
city Witicth is i11LtCi slower t hatn before. This crrre - -5-x~ 10 a he scatterng instability has b roadetn-
spitnds to the lower c entrio id of wavel itlln bet's it we ed the k -s pa ce s pecItrurn to Sutchi alit Oet 1 that thti
itake the ideti i tat iou i 

3
(0, *)r, . Tihe wave picket baditofheem-iessIrlvn),T r-

suffrs oniCutitoit io, wnchmay e asocatec w th fore. the formtationt of caveris is ettergetically pus -

the Inistabilities . but thent appears intact again ti tlie SileI. Still. We C\Iteeh thie t ranisfer ol ettergy to short
final framte. The cohierence of tuie packet is rallier ie- wi\ltghsopreeiahrsolyiceteotd-
tittakable . The location of a packet tin real space de- tiott for the itottult tal tustattoltt is oiil ttartimallv

pendis oni a particular set of 1 ratdont) phase of the satisfied. At a miuchi hater tie, solitout-like strut -

mo' des tin k space. whtose interference pat tern pro- luires h~ave turined as tin Fig,. 6, hI.,
dtices the real space packet. The tetidetic'y ifthe10 Is thle ratpid depleiut of thU toot1 truly) dtui it0 the
packelto1( sla together itay be ev idetnce (flat itie re is scattet'lnIg udecay I itist alit. ot tile I aiigntuir311 p)tittp
tito phtase sttift associated withi the scattering, process. waves '? Otte way to aipproacih titis qtiest ion is to use a

Subsequentt to litte t., atid up to tite itie f,,. we see, verslion of the wav e e'uat ionis ii) antd (2) whtichi assu res
a catastrophic coillapse [Fig. 2uc) I utntil the lettcth scale that no tmomtetnt tie lost to the Ionts. A totilitar

tbecotmes too small for Itie ,rid. Titi collapsedt wave S ciirhditiger equaltion,
packet cottinuttes lto lose mtottetumtt unt il it appears I., oI t) 4 I.
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dimensional simulation at times (a) T= 4.6>. 10 t showing .30

the enhancement of the pump modes, and I T= 6.7 tf1t w1', IE
showing many of the same features seen in Fig. 3(b). The
amplitudes of 60 wave modes centered at zero are shown. The .20

largest wavenumber kr is 0. 025 X
1,

.10

is obtained from Eqs. (1) and (2) by neglecting the time

derivatives in the ion modc equation (the adiabatic ap- 20 60 100 140

proximation), and therefore it excludes the scattering
(decay) instability. Analytic work6" ' on direct collapse
has been in the context of this equation. By solving Eq. FIt;. 6i. Electric field amplitude in real space during the one

(8) in one dimension for our choice of parameters at dimensional stimulation at times al: T 6. 9Y i)' ..O :nit 0.) T

0.5 a.u., we find that with the transfer of energy from . 9. ' .1. spanning several henm growth time s':les. L:1

pump modes into neighboring k-space modes, the pump lids are in the dimensionless units IF]. [i 1 In dim, nsiinal

energy saturates, but does not deplete ksee Fig. 7). units. 1 1Ol corresponds to 1500 X..
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(W) StLidie( ptI k'% ioisi t Ie Ii ci lll -, Iithe dI i 11120 ItI ( .T

ot it saturation aid depletion phase as a distinctt tills) -

(w) cal pirocess. Nonietheless, It aupears that the ihibi-
tioni ot direct collapse and tile finial level of total c-icr-
ge sat uration are lot sensitive to the banidwidth kit thle

to punt p. (We have v erified this t thle case prey jusi:,
studied,' in which ak, - Aik - k , 6.)

Although the one-dimensional model was adequate to

10-6describe the decay instability and the subsequent deple-
I ionl of thle p)Unit)p waves, thle behavior during the "col -

lapse" is miarkedly' diffe rent ruin thle iwo -di nsitial.
mtodel, For exaiiple, the localized sti uctur es apipear-
ig in Fig. 6 slowly steepen onl thle time scale of tfic

beami growth, involving some 10' plasm a p~eriods . Thle
t\o -dimnensional collapse shown iii Fig. 2 c ) is imuch

4 5 6 7 8 lasteri iii comfpartison, occuringi, in 10 plasm a periods.
TIME (--I IC 6 The probleni with the(- one -dimiensional calculationis 1

Pe

I 7.T. Lner-% donsity in. the punmp resonant modes, (11'>P that it allows waepackets to c-colic Into -solitoeis§

itls? t"131ci-ct density It' luring ;I one-fliincnsionAt sii - Solitons are exact soIlutions to thle %kay e equatiton xkith

Litiin using Eqt. (,) insteaid (if EgIs. it) and 12). the forim

E kl- V)- 21  sech eU xpWtkk-. - i

Therefore, the depletion of the pump miodes mrust be I 9
associated with thle scattering tdecay) instability. I x - -t', . w,) , 2k, . 9

Fo I instantce. w ith the &t -)ce of T- 0. 37 atid 1 0.

V. DISCUSSION this solution describes thle central spike inI Fig-. 60))

The inteipietatton of the role of parametric inistabi- vr el hs i.diinija oio uuin
al-L not physical. because they are not stable inI higher

lity giv en heire derives from more detailed two-dimienl - iinin. hycnilu osepnhr
sional numerical simulations than were previously dimcaseeings. ben adTheydoti to esstepit here, be-a
available, and is reinforced by a direct comparison of cuenrgisbng ade totessemb Ven

one-and wo-imeniona moels.As ws eplictly of thle beam Instability. The timie scale for their evo-

pointed out. the earlier two-dimensional modelsi of uinsreadtoilbamrwLirte)v

direct collapse were limited by the eventual break- 7-' -) JV\ 'It"< to)
down of energy conservation; the loss of energy in the \,,eeVVistenrgi hepi mdadI'
system was attributed to the loss, of wave energy into 2 isteoale iergy in the iunitTis iiides anget
parts of the grid where it was subtracted by aliasing . than thle collapse time scale given by Eq. (6) and de-
Those runs were also done on a 32x32 grid. A more
efficient algorithm now available enables the more ac- notae ytetodmninlsmlto.Yee

curae 1mallr tme sep)simuatin ona 6X64 nh fore, beyond thle depletion of the pu)Oil by thle scatter-
curte strallr tme tep siulaionon 6464 rid Ing instability.- the one- dimlensional c ale utation be -

ptesented here. The results are very similar up to the coe- hsclyiacrt.Ato rtrednvi
point where the earlier runs become limited by numer-

sional moidel is necessary to include the dissipation
ical errors. Our present simulations are not limited ofenergy ttiough Landau damping of collapsing waves.
by the accumnulation of errors, but the fiifte number of g

niodes available in the grid. Collapse does not pro- Sc ;'poesnavb eeatt h salsiin

ceed past the last frame in Fig. 2(c), because it has at- ofaulydvopdtrletst.
ready reached the size of the grid spacing. However, The twk, -dimnitsionat simulation described here have
there are no evident losses in energy. Because of these also been done w ith a background niiat-netic tield.' -

these facts, the simulation in this paper inust have The magnetic field cannot lustf dv a n - dint cliisiotta

moure value itt Interpreting the wave biehavior at latet tr-eat ment because it does not prevenit keel lapse !1:is -
imes when collapse, scattering instability, and ito- verse to thle field.2

7 Howex er, up to thle ptnit %kh hii

mierical limitations occur in short order.- InI particular, collapse occurs, thle nmagttet ic sHitUlationts appear at-
we cat] now conclude that the distortion of a wave ptacket nmost one-ditlL-lstola becatise ofthle ettect i thle

such as seen in Fig.- 2(b) is due to the scattering dcecay) collaplse title and onl tile se attei niiai istahihlt V. lit
instability, and not a change in the physics oif dirmect t his pr-obleim, there call be titlng let2 ie leets evenI NOtell
collapse due to anl artificial numerical damping. Ile electrIonl cv ,clotin ltetliettev is is stitall as

Our interpiretation is also facilitated by the choice - 0.01 , Mutcht is a realistic %alUit at0.5 a.U. h-or

of 1k, - 1I 2)ak,. This is about half the bandwidth of o,0.03 ,, tile sat uramoti let el ot tct postal ic

thle pr-evious woi-k,' antI] is desigited to motdel the beati etlet,- is stitiklat to the ottc-diticttsioiial kahoe.

unistabmle modles more acctmratelv - As It tot-ns out tile VI. EFFECTS ON TYPE III EMISSION
evoltitioni of the pumip imodes expteriences a mtore pro-
lotiged "satur-ation." as exhibited by the p~lateaut Of Tile tact that si-attertil_ oit i',.it -tIodt-s Ito a low %,

in Fig. 1,I in coitipa iion with[ the case Ak, 1k,. COndenSateitt eICedeS collaphse Ile have imptortiat
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consequences for the type ILI solar burst problem. waves.

Fiist, we note that the beam-driven modes are re- In the work of Smith 0i . the following physical
mote from the condensate, and the rate of injection of processes are represented by rates in one dimension:
energy into the condensate is, therefore, very slow growth of beam modes by a beam distribution based on
once the beam modes are depleted. In fact, the region in situ observations at I a.u., the oscillating two-
of k space where the scattered waves accumulate is the streamn instability, anomalous absorption of Langinuir
negative slope region of a realistic type UI burst bunip- waves by ion density fluctuations, and Landai damping
on-tail beam. In this region the beam should absorb by solar wind electrons.

Langmuir waves rather than emit them.
An example of a type Ill burst simulation at 0.5 a.u.

Second, the waves at the plasnia frequency cannot is given in Figs. 4ka)-(c) of Ref. 17, although the value
reiaii predominantly electrostatic, unless the spread of beam number density is no n - 5x 10". which is

in wavenumber 1k is much less than k,, the mean in uch larger than cur choice of nb n - 10'. Generally.
wavenut.ber. Since this is :lot the case for the con- their values of n. n are 5 to 100 times larger than
densate, a large electromagnetic component near W, ours.) The bean) resonant modes grow up around k ,,t
may develop. Such a mechanism could be responsible 0.01, and have a width ak k, of about 10'*. When the
for type III burst emission near the plasma frequency, energy density 'V', exceeds 3x 10 ".', there is a transfer

Third. calculations"'1
2 

"' of electroniagnetic emis- to higher wavenumbers more than five times larger

sion which involve beam parameters must be viewed than the pump wavenumber) by the oscillating two-

critically if collapsing wave packets are decoupled stream instability. This spectrum is stabilized by

from the beam as a result of their low group velocity, anomalous absorption of Langmnuir waves due to ion

For example. Hafizi and Goldman,
2 taking as their density fluctuations, and Landau damping by solar wind

premise the earlier work"'
3 "o on direct collapse, rep- electrons.

resent the electric field by a scalar function 0', t), We have the following comments regarding these
by writing results:

E(r.t) -k)0(r,t)exp/ik 0 . r) . Jl) (1) The induced scatter off ions. or decay instability.

This requires that the spatial variation of O be small which we find dominates the early time evolution of
compared with the phase term. If wavenumbers tend Langmuir waves, is explicitly neglected. This neglect
to zero as a result of decay and modulational process- is based oil aii estimate (Ref. 16, p. 354) for the
es before tie collapse occurs, then not only does the threshold of the decay instability. Nonetheless. our
use of the beam resonant waveiuniber k1, seem imap- nwinerical experiments in one and two dimetnsions of

propriate, but the electrostatic approximation breaks the beam-driven Zakharov equations consistently sup-
down. and the use of a scalar field cannot be justified port the appearance of this instability, and at the same

dirertly. We do not know how these changes will time do iiot exclude a priori oscillating two-stream in-

affect the results of the emission calculation. stabilities [see, for example, our Fig. 3(b) I and the
associated explanation]. This discrepancy in the nature

Finially, it is possible that the background solar of the parametric instability has been addressed over a
magnetic fild plays a prominent role during the early period of many years by both groups.

2 4 t4
' We be-

time evolution of the condensate. This is because, at
suchlowwavnumers maneti diperionis uch lieve that the decay instability occurs for relatively

such low wavenumbers magnetic dispersion is much weak beams (nb n. 10-" ) and low pump wave energY.
larger thain thermal dispersion i thie Langmuir wave The dipole limit of the oscillating two-streami insta-

bility seems to be appropriate only for strongly pumped
magnetic field at 0.5 a.u. waves.

All of these effects are currently under study. To some extent, the saturation of the beam driven

waves does not appear to be sensitive to the nat'. ot
these instabilities. It turns out that the threshold used
for the oscillating two-stream instability is of the

VII. COMPARISONS WITH OTHER MODELS OF same order as tile threshold we observe for tie decay
"STRONG" LANGMUIR TURBULENCE IN TYPE III instability. Tile transfer of energy out of the beam

BURSTS modes when 'W,, - 3 x I0" is common to both models.

Smith and his co-workers" 'jii l have studied the type The difference is that while the oscillating two-stream

III problem it, one dimension, extensively. Their ap- instability transfers energy directly to larger wave-
proach is to use phenonenological rate equations for numbers, the decay instability precipitates the forma-
the average spectral energy density I, in one-dimen- tion of a condensate, which then collapses to produce
sional k space. This is different from our Torthod of large wavenumbers. Although it may appear that after
solving the Zakharov equations. In both cases the the condensate forms at early times the two models
saturated energy density in Langmuir ,raves occurs at effectively approach the same state, we are concerned
similar levels, JW- 10

4
, despite the difference in that the following differences between the oscillating

parameters, spectral shapes, and physical mechan- two-stream instability and the collapse of the conden-
isnis. This ma) ae the results of comparable roles of sate may be important: first tecause of the monien-

parametric instability on tie evolution of the pump tutn transfer to ions or ion-ac .:,t ic quasinoodes, the
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Perturbative, spatially-pr iodic solutions of the Kortewcyj-du-Vj-iu,

the modified Kortewcq-deVries, and the nonlinear Schr6dinqer

equations are shown to be recurrent and non-stochastic, dense'.,

covering parts of the phase-space bounded by level surfaces of h,

constants of motion. The connection of this result with tho na.' i-

ical phenomena of recurrences and the slow randomization of

nonlinear systems is discussed.



I. I NTRODIJC1'i ON

The noni in-a £hdiqr andl tl,(c 't(,dif (2( (rt'e-c

equations dcscri be a nm'ir()I ;.isici1 , :cts in the!.C(J

where the 1linear Lkr)m o e ~[ c edi~ iici~* (*t,.-1tU

to be valid. 1For exanp1 ~,thesk. equations have. :_),en Io'~

studios of the inodulational instability and cr~iai! 3f :

magnetic waves in cold, -,c~iision-free plasmnas,2,anIh(

nodulat ional intai i Iu Lanqmui r wx's in wirm, cof I .'.

4
n1 asmas 'Voipr ri ft hoso, (an1d criain ,thcr) -"-

is not only their ubiquity but also the fact that they ar'

Sol vable by the mk-thl)d c1 tlic inverse scat teringA pr6Ahlr.

i-lAsically , the Cauch' e ok!itcin for th( sc. eqUtions is so IVed

the class (.,f rapidl': doceosinq funct ions (on the real I L"(,

I,% muans of the scat tori nq theory of an _iuxil1iar.'., r~ rr~.

I,. ;,: eqjuat ion of tile fo~rm

tU= S [u]

where S is a nonlinear operator, coi, b(- :3l% Iv provided it.L:

the "li:, reposontati cii

' Li

for same operator, A. Trc , de-n( t ._s C -ousua 1comxivu)

For the ronlinezar .,rhrddinqcr equation,

x u + U: o 2, kr comp 1 x Li)

the op%2 ators Xar,



3

l+p 0 1

0 l-p u 0

Iu 2 0(+1)iP)
-p 1 1 ,2 + i x

A 1 -i3U -xul 2/(l p)

where K 
= 2/(l-p

2

For the modified Korteweg-deVries equation

t + 6u2,x "2 + cx3 , (for real u) (*1

the operators ave
7

0 1 0 u

L + [
-I 0 j u 0

A -0 3(u2-i- , u) UA = -4i 3 - i
0 I x] 0 3 b-,

3(u -i .u) 0

03 ( 2 +i,, u )

It is natural to ccnsi,(,r the oiqenvalue problem

where y is an oiq,,nvr, te bcl rncinq to the ciqc,'iva u,

one insists that the il' ,evolution of ;' be qoverned by

i t = A,j',

it is readily shown that the spectrum of the operator L doo,

not vary with time. It is then possible to reconstruct th,



4

ot.erator L fand hence, t-h, sol ut of i! ,(x,, t) periv rL

i ts spect rum by %ve I -know-.n m( , od F," u qi<., (n ly t-he. Syrinlt (%I

behavior of its F qevem . The cuja1point htre i ,thait

f-or rapidly decroas i ri ftict inns u (x, t) (as X ) th S:'&t

and temporal bhha: joi of .. oIr Ihat -q xI is independ-ent of tn-

dpsired function u (x ,t). ' n s met hod h-s POefl used to iv ;

qate the timo,-asymptt i- '.ehaivlor o)f snO Ut ]orLs ()4- ()

(2) and a lso som', 11'~r t pa-r t icuLar 1 Lt i ns d-:-ci- iL i :
interaction of a Finite ou~m tsl. Oa~;uIt I' --011 it

solutions.

lIn a number of cases, the solutions of !-as. (1 ) a-,W' (2)

ander spatiallTy-por io~lic a hotnda rv conditions are -:equ 01. T' I I

a a rcje numnbe (r v ei-r'.' i S uAnd i I umi nat i~ olq u i ~a

studies, where t hc ii-5 of -)ci~ioI ic boundary conditions is

natural , hcavL. rcved led , that the jropaqa tion of ran(Imuir .,;av--

in plasmas, etc. , have an apparently reculrre(nt temporal belhavio-.,

An example of th L, I -'CLI rent hIehavi or for Lhe case of Lro

wavc s tS:rt i iiec' I I oL' thie prcsennt paper. One wok. j

natur il ly like- to st -idy thi s ;i.ocost; in u(oar to unlei st -,)It 1.

underlying mLchxattis-i (s) 1 1n at LCfIIptl 110 to examne thn s 1)hefloflief

one finds that the, power of thce inverse s;cat t(-rIn(I !Tnthod 1!,1

for functions ui(x,t) p~eriodic in x.51-2Hwvr h- h,7

boeen some interesLi nq studies for this case, tou. Such st urii

have been concorrcI wi~th certain, cxact analytical solutioils t

are the analogs W! the multi-soliton solutions in the case o-

rapidly decr'?-asinq Incios fa.ctr, the problem tur-z,

nut to be similar ' th it in tLhe hart I thuor, of sol ic!, N Tis iI



any instant in time, the operaLor T, is a function of u(x), whirh

in turn is a periodk,- f701n1t ian: of %. -1h s)Oectrum;T of 1. I ,

characterized by thl, ho XCS0 1', 0'- .allowed ,and foyrl'idden -on ,,o ,

with eigenvectors of rhe Bloch i-Wnk. Fo7 the Korteweg-dQVries

equation,

t + 6u)xu + 3 u - 0 , (for real u)

for example, which describes nonlin,2ar inagnetohydrodynamic wa;c

14
in warm, collisionless 3,iasmas, 1 is the usual Sturrm-Liouvz.

.2 8
operator, - ' + u(x,t). It has been shown that the analoq o:x

the n-so1iton (multi-soliton) solution is the manifold of

solutions u (x) , such that the spectrum of L has exactly n forh- .klk.-

zones. 1 urther, it has been shown that the dynamical beohavi.

of these special solutions is almoot-periodic in time. (For th- :

definition of an almost-periodic function, see Eq. (19) .) Th,

special nature of these solutions is made apparent by notinci th-,,

a typical periodic function u(x) has infinitely many bard-qaons.

Further, the stability of these special solutions to small

perturbations has not been co:.s [dt.ed.

Our investigation of the nonlinear Schr6dingcor and oi- tlw

modified Kortewcq-deVri es eqki',i. ljns was motivated by the dsir,

to understand the anomalously slow randomization of one-dimiensi'r..

nonlinear systems, originally studied by Fermi, Pasta, ati

Ulam. 9,1 5 16 It is observed nmerical]y that a given distri!.ut i.:,

of energy amongst the modes for either the nonlinear Schr;dinq,-r

equation, the modified Kortewuj-doVries equation, or an anhirmo:.iv

lattice periodically recurs with apparently little thermali.:. ico,-i

(or equil ib:riat ikn.



6

The slow randomizition of nonlinear systems has also beon

examined from a dii -. i-,nt poiit ' viw. Thi:; i!: vi .1.7 , ()n

the rigorous peitul 1.1 1n tho(,'oi m (I. i,o ;1o 1: ,j)oL , Ai ii'o ,

18
and Moser. According to this thcorem, under certain

circumstances (Hamiltonian) perturbations of a liamiltonian svst

merely lead to a distortion of The 1inear-solution manifoiCL

thus retaining the a]nost-rperiodic character of the linear

solutions.

Our purpose here is to present an approximate solution :

the nonlinear Schrbdinqor and of the modified Korteweg-de:Vric.-

o:'uations in the spirit of the Kolmoqoroff--Arnol'd-Mosri- theor-(,.

]t turns out that the mode-mode interactions are such theft th,

Kolmogoroff-Ariiol'd-Mose- theorem cannot guarantee the pres.

of the linear manifolds; in fact, our perturbation solution

shows this. Even so, the (a;o.roximate) solutions turn -)ut ,i.

almost-periodic in time. The almost-periodicity of the

solutions was sugge!sted by the numerical solutions of the non-

linear Schrddinqer e'uation, d,sct-ibed in this paper.

Accordinq to a v.'.l -knon th,erem of Liouvi lj(, 9

Hamiltonian system of N dcorv:;-s kf -eedom and N commutinn

inteqra]s of motio:n Is comijl l,,l, i- Ioqrablf,, thus alnwj )o

separation of variab les ,And i.;itroduction of action-anq ,I

variables. This rules out tho possibi]it-y of complete Vcindop,

16
zation. When the nu.iber of deqrees of freedom is not firito,

the existence of (an "equal" number of) constants of motion

is necessary but not sutficient for integrability. For t.he

class of rapidly decreasing functions, both the Korteweoi-deVri,
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and the nonlinear Schi<Ki in, ir equations have been shown to bu:

integrable by explicit- trislormatioris to action-angle varibh, ' s,
20,22

furnished by the scat Lorinq data of the inverse method.

However, the non-inteqrability of a very general version of tie

nonlinear Schr6dinqer equation for periodic functions u(x,t)

has already been sugqested using the superconvergent method

proposed by Kolmogoroff. 22

Attention must be drawn to the following. The discover,.

of solitons in one of the early computations of the Kortcwc-'\V 1,

9
equation has led SOme t,) believe that the recurrence phenoiienn

observed there iF-. due to the solitons, which interact elastic .

It must be noted that this is not so. In fact, it has been

conjectured by Lax that all spatially-perlodic solutions of

the Korteweg-deVries .,quation have recurrent behavior. This h

been proved for the special multi-soliton solutions mentioned

earlier; it is true for the zero-order (i.e., non-soliton)

solutions of the nonlinear Schr6dinqer, modified Korteweq-d vrl

and Korteweg-deVries eq,7uations [cf., discussion followinq Ir-h. (.

it is also true for thc perturbative solutions given in tli: ;

paper. The true explanation of the recurrence phenomenon stem..

to lie in the boundory conditions and the existence (f (p;rh: i

an infinite number of) constant:; of motion.

II. NUMERICAL PI.-SUL'K

Our investigations were in large part directed by numcric,i

solutions of the nonlinear Schridinger equation with periodi.

boundary conditions. We assume that u(x) is periodic with

period L and has continuous derivativ, s of All mt 2s. Ib



can be represented iii terms of its T?(uriker c*_'Cf~iri~flts U k:

where k - 2, - i t 7nr t i

The oa-r ticu lar nn1ierSchr-6dlinqer ken-uat i of interest h !S

the tot-II

10t + il+ L! 2 U 0

where > denotes a spxitiAav vracje. The subtraction tervm in-

Eq-c. (4) is a peculiarity -of wave-%.',ive i ntractions in a p I~a

(It must be emphas i zed that t h( nat ure l\ 11h outo i

not an artifact of this termi.)

LEq. (4) cain ho coinsidteed is at set ui ord itia, y di fli:101it I

equations in the spa(,-,

with the uIsul n(.rnm (x) Z uK

By dir -t subst i ,tt iorn of t: (3) into -q. (4) h,.,-

du k + 1. 'A'U
t ~ ~~~ k kv -'

who re /indicate: tna--t k ' / k , this heinq due to h -h~i

k I 'k.



It is weI - known t.1i,:t the no; i1 n cai !;chrdincc, r euuati ,

has infinitely many ccnimutinq intc-,ris of motion.6 I'he on :i

associated with the i:ivariance group if the Lagranqian densit,"
23

of Eq. (4) are

E/
k2 k 2 1 * *

Ii kU - -i Uk Uk' Uk" Uk-k 4 k"
k k,k' ,k"

k

1: , .2

k

represent in the i 1 ton iiE , tho T,,)rmentum, and the bosor. n1..

respectively.
/ ildic c .u "hat k' # k.

k,k' ,k"

The computati Iv s w.re performed by the Galcrkin method

using .i finit, nuwLr (,2) ot Iouricr '.idos spanning the 6-s:

solutic n spocv,. -'h,. ii.i, iiotion of th or: inary differenl [III

equation, Eq. (5), was carried out by splittinq the evoluti(,n

operator into its ,iear and nonlinear parts. The linear ;;at

of the integration was performed exactly and the nonlinear o.t

by implicit methods in x space. Aiasinq errors were avoided ,
24

the usual method. The errors sustained in H, P, and B were

less than 1 in the comFutations.

The evolution of a group of clectrostatic (Langmuir) wavts



h.--vi ng initial ly ias ianL-S 1,,, i StrIiUl .- )m iin k s~~ a

for suvk.ral values o the. boson flnier ii. FolLow.!J our

in the I ntroduct icr, thL ULiqul Ly oC the non Ii r Scrb i

equat ion ensures tho-L LvSij ta)ble , LS'IseI il~ , theL .volut ion c t

packret ma'. be reja;, '. i (I ds5 t v p ic, foi :!iany (tif fors e

> 7yS1ia pL-)Iemns; Wt XA, it, tif vAIi; wC-.v.s of fini-t ca.

on deep hater (So~wives). 25 11, I cases, thu wave ,

was observed to b1.rea-k up (i~i x sjp)c -) ,iito several local rai~

Ind minjonma and tc nro rar ' reconstitute the or'I;ina.l

a long time. 1"'icurc shows thc- t-rt icctorios for the SoCond a

the sixth modeI3 ovi.i .) ouriod 0f apprro0X i Mtl th0 ir ee re cu r--:.

theintia (u~sai ;mk'.(ve- tnet,- thoit the initia-l

cketwascener :.~, rxuhmdeitt k space.) 'ic

urili n of the: iifd t ix(-; hSO t-..rnOV(2d, thus exi' 1

oirbit structure consiuerablv!. 1 f this is not done, an orln-t

appears as a circle whose circumferonce is a thick line.

The approximat" IOCU~renIcU of the: woive packet and the,

orb~it structures aL 1k;est that L11e seluti ens areal stpr t

in timec, as is the co;e for I h spec iil , fir ite-zofie pet., i al

noted earlier. It mu.st I-,. borne in mind, though, that due to

ipaccuracies and the. finite- micqnitude of the time step, it

cani iit-vrr be provedl whother an orbit is s;i riply-peri odic and

closes on itselt or that it Jis olmost-pot -i odic and does !,CtI

quite close on itselt4,



il. PER~TURBATION ANAit.Y'-~ S

In this section: wk, a~t~:~ n an~uii ,s of the computatic)r."

which is not basced on thcse~il exact results of the

method for fiierociotntialls. However, our results r

special also il! Lhat thc-.', ire appr-ximate. and assume a cor,,'e(r-

qunt perturbatic.:, ox-,nifior . Suti ,_nwhtfa oww

Tha th Forie seiu cxarsio. in Eq. (3) is ab,,so utel'

uniforrnl' converqent. :'tht Jall the manipulations -.re riYFf

valid.

In the linear Kroxima titn, EI-a. (5) becom_';

du,
"U.

repr c.sent inc a 'ot.. viin: iriito so't ofl uncoupled harm(-.ai7

oscill Iators, (I (t-) .,, (t ,) xr- 2 t) , !or a] 1 jwt .

iini te constants S nii'1 U, It) (fr all k) , .d h3

i nteqcrabi !itv is S X:1 I ic i l CI -.1riv, any s-) 1itiLor 1

ori, an. inf:inite-dlimcei.. .,.tl torus wh-ose ross-scectnr().s alK

ciriesof rad3ius; r (t) 0) (fJo:r'r'

Furtiier, Eq. k6) t. t I i fi 1 o h (- t orus 15 c h,:r,

by a frequency ~v

with

(2; 2 is a!. intotier)(
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Since the f LC(qh2nc\'(Ypori 101I ofll' I v Il. '*.QI

integer multiples ol One 1not h'l, Lt f -Cr v.'s that the f ] ,w

torus is simply-perioh ic with pcricul (recurrence time)

r ,

The constancy of the froquency vector , Eq. (7) , on the crm:c..

enery manifolds implies that the syFtem is degenerate.

In order to tpply thie Kolocqrof r-Arnol 'd-Mosor stab- lit.v

theorem, we proceed as follows. As a functional of n(x), the

Hamiltonian af h n ,] ,,r :1hhr A int( r equation i-

i{ = 72 L (

L2

Defj n i irq reaI-v t1od ,-unct ion:, q (x) ind p (x) thuroq, ;1

u(x) - g(x) + ir(x)

Eq. (9) takes thr" §' ; i

1/2
/ 22 2)~ 2 2),

dx )  (,( + ) (+- .)

which becomes, or usine

(g,p) (x) 1(k k) oxn(ikx)

the followinq



H t k2  ~k~ 'k' lk

+ 2q Kk T ksk k' i.

where use has been macic of

(g *

which follows from thle reality of q(.<) -ind p(x).

I ntroducinq (zerco h->vi-er) real-valued a-ction-anqi e variA>!-]('s

[(J " ,(I, 81 thr-ouqh

= Ik * (-

the Hamiltonian, Eq. (10), becomos

2/

+ Zk( +T). (I Z I k k'x [
k L1 T " kk~" -k

+ (kI kIkkIu 1  2(- *Ik +

+ 2 I\k' k" k'kV') [XP( k k"k k-k +k'J(i



All pertur~t t ior. th c! Of . sLility O1 linearL Io OW

lani 1ton ian systemrS a i- Vn Jo(9ASOUTC Of

canonical Irn~r~tj~ ( . I ( (I

such that the f inal liami I to-Aan is i funct ion only of the

action variables, thus rtducin :the solution to one of SImFJ

Auadrature. 'ris is th- well-known process of transformati&',

a- Birkhoff norm,,! 'or!m. ib 1(w ver, there are certain requii,,

ments for the ccn\',eroc(r-.< 01 this process. Those requirem-':o:;

o11 I)lso C-), for 4L 1,,, ~ vt o of tho i:o6!ar!ianLii

thc 1linear flow ks i;ltjoIi.d in the o iiyrf1An ~

theorem. in pnart iculair , J L i F nec.ssarv that there he no -

-cesonances between Li- ptridcnt- dcqrees of freodcm of the I L

f low. However , w . so,, I ram Ecls . (11) and (8) that the fir( I ,r

of k and I karc2 idolnt ical for .,v-r,, k . Thus, whenever thor;-

Itup CO a1ii; betWC('1 t%(, weSUon lo , e is the po0.qis~il 1* *

resonant energ., t'xclianqu. S;uch a coupling is maifest in the

term in the braces in L'q. (11). Under these circumstancLs,th

Krlmogoroff-Arnol 'd-Moser theorem Icannot quarantce the I-%-2:

of the tori of the linear f tow and, in, fac..t, the destrucU on oi

these tori is possible.

~Sinc.- tzh2 s ':vtoi sonlu' o is .. sed, ihe deoti

the ci]cu lation ',(r lac. (1) only will be qiv\en, and the solFUt 0('

of Eq. (2) will bce quoted at the en(].

A naive perturbation calculat-ion of Eq. (5) ends un with

a "snip 11 divisor" pi obl cm.1 T') avoid this secular behavior,

several tinie scales are' introduced Via the fol tow ;inq explic;- io)n7;



uk t = U (0) (' . Uk( ) : :) ( ?

d = + + +
dt 0

where C is a sinai I paramter :,,id 0 21... are inder)no: t

time variables.

An C is appended to the nonlinear term in Eq. (5); Eas. 9.-)

and (]3) substitutod in to obtain, to oidcrC

i u (0) 2  . (0)
kK

with the Jc - r.,: zO I ut io-fn

where Uk ! 2( .. , 1 fun't w. v, h. (slower) time-vari a 1 I

" ,' r2'.... , is to be determined.

With the aid o u::. (1.), tho nrturLLb tIon , xi'n!;ion) to

order " is

S kU, ) - L (0) _ k

k K

w t t0) ,xp ri k 2+' ) ( k ' - k ) -
-7 1Uk' (O "k"k k -tlk ' '+k ' -

with Lily (jcnr l - ;] )IJ ion
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(1) (1)

Uk 'tO '' P..... ,,)ol ....

(0) 1
( Jexp (-ik-

k'

(0)_ (0)* (0)
1 ' " k- k' + 2+2(k,_k)

2L kU, (k ' -k) (k'--)

(0)'where u is to he determined, (0

k'

that k' € k, and indicates that k' # k an6 k' i k". !:

k ' "

latter exclusion is prccisely due to the mode- r sonanc ihcr.

mentioned earlier, which qives rise to the secular teim

• (0)
L Uk'q (0LI ext)(-ik" ' )

k'

Non-secular behavior Ls onsured by choosinq

(0) iuk Uk,! -2

k'

(0)12
This equation iposi , k 0, whence its solutiot, j,

i (N-IU

Uk (0) (['2') .... ) = Uk(2 (x I. k 2).) )

where Uk( 2 '." is to be deteimined and
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N =L uk '' i

k

Using Eqs. (14) (16) in Eq. (12) ,we f inalIly have!

u () exp Ii (N-! Uk! -k 1,1t/Tju -k (*, ki-k. rk,

2p *luk U . + 2 -2k -k) ( k I-k" ) Tlt '1

where C has been set. omiua1 to 1. and LUk1 has bc-n chiosen,- :Lch

that uk (t=O) Uk and that !,. (17) preserves the constan1ts

motion H1, P, and B3 tco oriler (I ') (s(,,- Appc-dix A)

An identical ca lcu 1 *It irn lendcs to the tnl low in(-, s(,.uti

for the mod ified N,-orte~'ccq-dtvrie~s oer.lat ion

Uk (t) exp k (,'1- 1~ 2 +kT)t/i., 4 Uk ',' .L,,,

(xp i k:U zkl U.,! -K"!Uk". -(k-k '-k")II 1 - '- 3 (k I+k) (k -r)( j

where
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u k ( t -O ) - k ,n ,i j '. ; t h t . - k " , I. '' , , ,

k ' , ,1"

k" # k.

We note that by a remarkable, nonlinear transformation

qiven by a RAccati equation, Eq. (18) gives also irn expliclt

solution for tho Kortoweq-deVrics ej,luation.

IV. DISCUSSION

As they stand, th, solutions given by Eqs. (17) and (1P) ai

not particularly intorinative. In order to understand the- 1), h,:

of these solutions, we need to consider the class of almost-

periodic functions.

For illustrative purposes, take the simple case of a flo'.,,

the surface of a two-dimensional torus, Figure 2. Denote tiC1

geographical coordinates hy 'i (Ionqitude) and q (latitudc.)

take the flow given b),

dq 1

dt

dq 2

dt . 2

1f./ 2 = 2 m/n (m -l -- n being inteqc rs) , then in i time

t 2 'rn/ ] 2-,n/ a ~oi nt on the surface of the torus tr-.e's', , ,

a trajectory which closes on itself after winding on the surlf I

rn-times the lono way tround and n-t imu:i the short way -rout '.

is an example of a * , io (i- flow. if ,,I/.2 i. irrtona

>o(L thc o @t i f'it of t 'JQ i toc t h-i the puitit nc- n I klt !H
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returns to its origin,,. I positioiu. n Ilict, the trajectory covir. -

the surface of the torus de-nsely ind ergodically. This is an

example of dn almost-periodic flaw.

Closely associated with an almost-periodic flow is an

periodic function, an ex~wiple of which is ;; (t) = sint + sin

Since , 5 is irrational, there is no (non-zero) time t such ,_hJj

(t) = (O) = 0, although it approaches zero infinitely many t

to great accuracy. The subtleties ot Lhis behavior are ombodicd

in the following definition.

29
DEFINITION: (t) is an a]most-pei-odic function of t if

for v , -0, there exists a ,0(t)

and ii 0 in everv interva] .)f lengt ,

su-h tha'It (t)-:.(tt') , f.< all t.

This essentially S ':; t it. iI vi divi t, the t-axi , int<, 1::j.

of length i 0 ' then in ,ery." on> ,- t-eL.OSe the function apIr' x3 a t

a particular value that it has in each of the previous int." '. I.

Perhaps the charactcr of an a1most-periodic functioni is

best captured by a thcore M of II. !',ohr 2 9 to the effect that :.

d function may be .-pi-tsent.ed by a (generalized) Fourier si i

:(t) Uxi) (i , t) ,

where the frequencies are not n'cssari ly inteqor mul tip e::

of a qiven frequt ncy

Comparing Eqs. (17) and (18) with Fq. (19), we conclu (:.

Appendix B) that the snlI: ,ons of t!h, nonlinear ?chrodinqor, t i..
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Korteweg-deVries, -ind the" ,i if it'd t r-tweg-dVr i , , :at.oi.; .,1 •

almost-periodic functions of ti,-.c, and come. arbitra)ri~y cies, 4.-

any point on their orbit in the course of their time 0vuiutt>'1I.

In the linear approximatian, we saw that the frequenccz ra

the modes were Inteqer multiple; of one another, leading to a

simply-periodic time devolorient. However, due to mode-mo,_

interactions [cf. , discussion following Eq. (1])] ther. arise

resonant interactions between the linear mndes, leadinri to t h,

exchange of energy. ,)ne effect of Lhis resonance interact o .a

to re-normalize the zero-order froquencies. The arl itUie-.:

(renormalized) frcq-I inci es ark no longer simple multiples o

one another, in genera], and so the tra-joctory of the syst. :, A,

not close on itself. In fact, the orbit wiLl densely cover a i.

of phase space that is bounded Lx the lvel surfaces of thet

constants of motion I', P, and :I (:;(.!L A)ipndix A) 'To ou- k,,

it is not known if-, under pe'iodic boundary conditions, the

modified Korteweq-deVries or the noilinear SchrOdinger equatlo:.s

possess an infinite set of constants of motion associated 'ci:

their hidden symmetries. Wu have only determined that the

solutions given here preserve the obvious constants of mot I(.

related to the invarianc, ,rou, of tne !,aqrargian density.

What about stochastization? The oritiinal expectation in t :.

15
computations of Fermi, Pasta, And Ulam was that with the

inclusion of nonlinearity an arbitrary distribution of en:r:iv

amongst the modes would evolve irrk.vcrsihly toward an asymorto, -a "

stationary equilibrium state. The negative re"su]ts obtained i.,v.'

Fe'mi , et al. , can i'e accounLed for 1y n almot_-!eriodic ;u P:



for the nonlinear osci I1,,t ors, !sucn i_ thiose B/LInI this

(In this connection, irc 'eronce mus L ,]0 ho madL to the re la (.(,

wor ofThagaa>-3o. A 1huuh tne almost-periodic characto:.

thtse sol Utir iOS1, ueto Qflorq' exchainqe moq the mcd( 7h

the system neither eviolves irrecvcrsiblv nor equilihriateF .

Thus, starting from 1-n arbi trary distribution Of encroy an:~

the rnodcs, rather than c'volvinci irreversibly towards a statn ,

which there is a stationary distribution of enerqy over thc

modes, the oneray oscillates back and forth over the modes

(almost-) periodicalb. at least for the time-scale over whichi

our porturbative solution is,: valid. F or consider the two-trn(.

autocorrelation functi.an RCPr) of an almost-periodic solution

*(t).

R (T) - 1(i) (t ±T) dt.

whcre :is~, fo! x.m th,. enoo of the free--so: fac.

for Stokes waves on clevo wa te: , Or helt hotri c ltie 1 ll '

of Lanflfuifr wavcs in a plasmna. Since ; (t) is almost periodlic, it

can be represented a.,-

:it a cx*n (i * t) , (n~ is ani intoger)
'1n

n=. - 1

where o n/ ''m rational number.

Substitutinq F';. (2 ) to Eq, .'10 wL haivo
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s 12
sIl( 0, m /2

1 . "r "(a -! , . ,M .. ... 1 1 ) , -:n ,In In Ill

For a stochastic ( r mixing) f low, the auto-corri, atio. fui.('t

must decay to zeoC (,as T .) - low(,ve r , w e , fee1. )

that R(T) oscill, tes .s a function of T. Lt may b( recal,, , 1

the Landau-Hopf mod,,] o! V luid turbul,nco is no lon-e r reb

as a viable theory 1,-r ihis sami, r 3son3  (amoq other shc-)r

comings) 32

Ergodicitv w oh,, tlow.s, whica is a stronger condi L "

dense orbits but wc'ak, than stchastic itv, remains , :,

question. For oriOdnicity, one must show theat the time s,:>

the trajectary W th(. svstem i;i a rerion of phase s- tcr. i:-.

proportiont] to the . -,e (or iiee.sure) of that -gio, p. P ,

in.'inite dimensional system, ther, are considerabi , tochn]i:.

difficulties involIved in demonstrating this. In this connoct

w(e: ro-te that th. , eotiv :. o: '"otiii. lsii , i" dw,',i't.

ttl:. t.:: a, :0..: ; "- 2 t . , I ! aO' t 0 ,' ' : , i.U l s0. .? .

In closing, we must reiterate some of the main points ,,

our study. As noted in the Introduction, the nonlinear enuations

which are the, objects of this work are we!]-known for their

common occurrence in many branches of physics. With such

equations at hand, one ol ion uses iumurical methods of solut,

with periodic boundary conditions. This is no doubt motivate,i

in part Lv the fact that. in the linear approximation, these,

equations posses' , the usual iinusod ii solutions,. In this 1''I

,"Ll i"l I l



thoroforo, :i , ,, i,..

by th nonlinear -Ii d ar crIuat I, odrIc:C wves; .

wa.er, described by ".., same e(Iuatior,, would dispelse ,,J

reconstitute exactly the origirn.il wave--packet when the diffr:.'

harmonic components corr.,- under constructive interference. Th.

result of this paper V 1e succinct ly ex)ressed by the stat,..!:, T t

that, for small nonhinear.ities, one can still expcect (approxim :to)

reconstitution of the ori.]inal wave packet over and over ag ,n.

As it stands, this st:.temert may be ot li7..ited valuc for the

person performinq c muutat-irnal studies of, say, Stokes waves

on deep water, sa ire the small departures from the perfectlv

linear system ma not miouut to n -u.h ever a limited compuLC iQ(,.

34
time. However, it must I)(. noted that the .:ilmost-recurrcn,,

behavior predicted I)y the solutions given here may imply ir

ergodic temporal d.%:,olopment, which would be c.1 considerai].

import in the stat-is al th-,ories of fluid turIlilence.

The recent computational study by Yuen and Ferquson of

the modulationa] 10!t'1-. et ,n o! Stokes waves on deep wat. .r e,- i

us with the basic c'lue i-  t,) how to modify the prrcseit c,. ,. ..

n ; rder to dhsih t h 1. I ree,terc, hc.nomena in regirtes . :,,

the rionlinea ri. eks , i,. , l(t ;, C.ssar i Iy sin .11. 1 i , futui .

article, wc will " 'o .: ,- de ,iled i:, ]vticai study (-,tI -,

nonlinear Schr6dinqer reuation with particular reference, to th,

experiments2
5 and cornutat ions. 34



V - CONCLU S 1('N

F'or sm~t1 (-1: pIr t - cs r- ium I i I, ,Ir i t % / i i - kw' (, l tC.I I,n (

that the spat ia 1! 1. -per i odic soI1Ut. LCn.; oftl b KOIr :eCW <-(J(eVr3 ' 5S

the modified Kortew-ie(-Vrices, and the nonl ineair Shid~

equations are almost-periodic functions of time. This hvi-

is connected with the approximatc rourrence phc'n~enia r(5r!

in numerical computations of nonlinear systems and their

associated aflame-] ,us~y s stochisLiizitiofl.

The almost -:,' :*Ai ')f cc-.tain etx-ct, ;c. s'7:

of these equatio-:s ! is ci r-cadci b)een establ ished. Lt i s

interest to cdetermiine this, charicteristic is shared ILv-

the spat ial1 ly-periorli c sol iitions, as conjLecturerl ILv T-ax fo.r I

Korteweg-dcVri- s eq~lt ion. Our results hint at such aJu

Final ly , .,e note that in t -: sam req ~me of va 1 di Lv cur

ca lcu 1 at ions c *in N-o ~nr~ to ilo(re U ei~n oric ni i

and to vcnor fiolcs.

After completion of this wo(rk, we became aw.are of an

interestinq recent p,-i)er 31addrosstng a related problem.

Specif ical I- , the ituthors ot thi fn paenur consider the slow nocll.-

lation of the exact finite-qaip saltitions 101,3in space -:nJl

in time under the influenct, of vucuturbat ions, usinq the meth d

of multiple scales.
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APPENDI[X A

In this appendix, we show that tho perturbLi on so uti')Ii

of the nonlinear Schr6dinger equation preserves the boscn nu.;ibr

to appropriate order, i.e., O(U ). Thu conservation of the

momentum and of the Iamiltonian can be similarly demonFtrIteC.

The boson number is defined following Eq. (5):

2

k

From Eq. (17), t]'.c i i-hL-Iij - sid" of Eq. (Al) i!s qiv,- by

.2 kt kv k# Uk .. ..
k k 2T, (k'I -k) (k'-k")

k k kk'i,k"

<o lEU K'2, _:2 !2
xp~~~~~ -i -~k 2 ' 2ik -l k+,22(k -k(k -k"

Uk UkUk-. Uk-k+k"
(k'-k) (k'-k")

!2_+i; - 1 " - k k -2(k'-k) ( -k") t /I

eXP1 O k k' 2 (k'-'1T'

+ 0(U 6 )(2
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Under the followinq su~eol ~.c~Ln:k - k' -, k"

k- kand X'" -k, the sQoond ,.,,.o:,,ntiJii term in. Eq.(A

IT U UU
k k k-kA'-+k' N

(k '-k) (k' -k")

1X1) L 1 2~ Uk'k (k'-k) (k' k').

which cancels th, a 1 ~wprcrI~itri whonce

B 0 Z~ I (U)
k k.

express inq tho ; -A'a 1 tL * r n]m!ber E k

its initial V11uIC.
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APPFNDTX B

The purpose of this appendix is to prove;

THEOREM: Uk (t) as civen by !qr. (17) or Eq. (18) is an

almost-periodic function of time.

We remark that Eqs. (17) and (18), truncated to a finite number

of terms, constitute, by definition, quasi-periodic functionrs
29

of time. By a well-known theoreM, such functions are almost

periodic. We, therefore, have to prove this property for thf

full set of terms in Eqs. (17) and (18). We give the details ft.

Eq. (17) only.

PROOF: Considur

(t)" - I +k"k~ t  E (k-k) (k'--k" ) xp ' k,k, k,,t)

Lk"/27r= .

where

2 _j 121 _ U1
'k,kk" Uk Uk2+IUk,l I Uk k +k" -2(k'-k) (k -- k") T/L (!,l)

We have assumed that iUkj is absolutely and uniformly ronveroont.E k
(Sec. ITI) 5 so, therefore, is lURk,, Uk-k,+k,,u. ILet

I~k'Uk"Uk-k,+,k'k k-k'1+k'k',k'

kl~~



2 9

Suppose C 0 is giveon And let

n ([, 3)

L

where [a] denotes the largest int'it r less than a.

By definition, the finite sum

(k bLk ,  Uk-kI+k,,Skln) ~~( -t = k-k) (k'-k")ep( ,K,,k".t

k'-k,k'-k"- -?-n/T,.

is a quasi-periodic function of t.

Clearly,

*

()USk (n) (t) Uk'Uk -kU k"

k Skn (k'-k) (k -k")
k'-k,k'-k" 2:ri/i,

k' -k,k' -k" '-2 :,!.

Now, there exist a ) 0 and a 0 in every interval CY 1::

such that

Sk (t) - (+ ) ) '-,'3 , for 1- 1 L

by quasi-periodicity , k  ,

(D)Tk (t) - Sk (t (3Q /0 1 . 3 , for ai) t (. 

by Eqs. (132) and (M3).
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Now,

9k (t) - gq k(t+ ) [gk t) W sk (n1 (t) + ,-k (t) ](

- Sk(n) (t+, + Sk (n) (t+) [tgk(t) - Sk (t) - [qk(t+r) - k )(4-.

+ I s(n) (t) - Sk ) (t+ )

whence, by the Cauchv-Schwartz inequality,

!gk(t) - gk~t+ :) ~ q~tM S (t) I + : k(t+T) - k (t±:)

+ S (t) - sk (t +' --'3 + C /3 + C/3 =C , for a. 1 t

[b3:  Eqs. (B5) and (i36) .

''huis q (t) is 11n :',. - i, judic fuIlction of timef . BV st.bl:, r

theorems, t' --o.for, , s I u'. Uk (t) and U(x, t)
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Fig. I. Trajectories of k si ic' ni m,:; -r . periocl of thrl

recurrences of an initiaI]v-Gaus;sian wave-packet. (a) second

m.de, (b) sixth mode. AL any insta:n I in time t, the electric-

field is given by r(t)exp[i(t) P is the minimum vwAUC o

r(t) in the computations, thc ordin to ind the a1sciss, .

and the real parts of [r(t)-0.9N exp[i' (t)], respectively, and

labeled Imaginary (W' ) and Real W k ) on the figures. This

transformation renders the orbit structures much clearer, h'cL

greatly exaggerziues the angles of intersections in (b) .

Fig. 2. Torub, representing the phase-space of a system Wit .

degrees of freedom. Geographical coordinates are ql (lonqitud.',)

and 72 (latitudu).
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Chaotic (strange) and periodic behavior in instability
saturation by the oscillating two-stream instability

David A. Russell"t

Depatinz of Elcra. Engineering. (rn, 1i Uniioes At. \ )',A 14,0 1

Edward Ott

I) hpartooj PPI ofI Phyii- %and .4%srinoni s. ariza t), parric..j *If fh .',,.1k c I 111. ;k!

Re~orlsed II0 Febru.11N I'4S I, a-epted 2'4 Jul% iI

] he niiiitiea Sitrodinger equation %.ith irmc~i itim ai1 tairplig i, it uiict to thtvee aesic

resttig .stin f ionlnea ori nr~dile'rtit mi equatin sLsc~rihes ti hexc it.itin A lineai la pd ss ~dAsj
t the osutilating mo -streaml instahilit A risen bN a litiearkI unstable pumip \4~ flu ths\ 'tein] rcic, ip

simiple: model for the nonlinear saturation oft a liniiih unstable ooaxe 1 hie trode! is cexamined anals tcall, andi
itiutnrincall y as a funct ion of the dimensionless paramreters ofI the ss steni It is found that the moidel can exhibit
a seAlth sit characteristic d~namical behasior including ,iantonar eq~uilibria. 11orpt bifurcation. to pslicrls1

orbits. per i'd doubling bifurcations,. chat i o~luitio~n, haracteristi, ot ,trainge atiractot. tangent
itturcati1'iis frot chaotrc ito periodic solutions, transient ados. ind h\ steresis Man\~ of these feature, .i

shtkii I, be eixplainajble in the hadsis of one-ditensionat niaps lIt the jasv ;if4chaoti: 01.11jons. etdetice f.r

th:e presence of a strange attractor is prosided h. denio~n~traing Cantor set-like: structure i c , ssalc

irisAriance in the surface of section

1. INTRODUCTION abl. to discetrn a ticher- vat-ittv (if ehatactelistic ,. -

Recently. it t has become1 cle'ar Ilhat ni'cnse-vatiLvi nanticai behavinr. Trhis behiavior includes the pi-evi ,L.'-

dynantical svstvnis can cxhibit various topu ti f *1rac- 1y discussed pertiod di ubli hifut-cat if5, (chao's atit

It rIStis dvtiittir-al behavior. Particla-.r inltet-eSt 11a0 tangent btfurcations. tit additilln to jphetlliiiena not ith-
teotrtion etratits ponitiea ad it th jsssinliv serve~d in the previous paper: tranfsient k haii's. hvsti r-

(''I chiatic )it i!tirvtaiti a ploanoniii attract the( dostitt) 10 sts. and Cantor set-like Str-Ucture. (It is p ,ssihlv
hyvsteresis ando tranisienit chat,i could Also Lo 1,undit!8

A striiige altrtt ort is givenlit Seci. HIM) It is pi Ixibli' tiLtrewv rolmbtfroifrn
that the-se ciiticpts wkill have art imipact on plasitra in- thnes the-wa e tdiei But . I(ori slifrn j ertl-eti
sics. partiiula: Ili iite area (it plasmia turbulteice. strutre iha those) aiste ireen t'.I Ciito set-lk

Ilit' preset \kt -k Ck1lStdurS a sitipm zittdel for tii- be compilutattionally testilvcd. I Atnother difirit- I i
-StbItlity SaItz.ittin idt .1 ttearl\ untstable' wav: (lit, the miodel discussed tin Ref. I is that, in the iast,I'I

4 "l5ttof enet-iv ti tic unstable wave is atr-ested whteti oscillating two-streai tttstabilil., stationa-v tittal
its amiplitude is large,( (tiough to parantetrically exctt states occupy ai comiparativelv i-Irge re)ion 4I 1lat"i2. -

li nearly damipeil waves lin a previious papertI this Itro- tut space.
cess %%,as studied fur the case in which the parameit c The starting point [for ibtatnim., the mtodel squasti-'ii-s
exctIillil If the linearly dam ped wavces was due toi the studied heep the on-dii kuila niiea Suhr .

rtsl mitt three wave decaY instability process. In the -r - (iat-t.i rowth and ..* ip. Li
preen pae e cinsider the case tn which the parai di nge r equat((ion with linta seio thati anip i

tmetrtic excitation of l inearly damped waves is due to the iclde

''st illattnct twi-sttt'i intstability. (This problem has hA ,~ AF-F2 I
been studied elsewhere,l hotwever. the present paper is XV ' * 2  

A

A niore thorouthli invest igat itn of the problem anid re- %, i re F is the ctomplex amplitude citefficient (it tw i -
veals a grieater vartety ol of .Iraniical behavior thant was ditrected electric fiel'd. 'V dentoites the spat i.il a%(,:

titutidt in Re.2 o 2. atid is ai linear priiwth-danitng ioperator -I,-

Iii the catse A, the resonatnt three-wave decayr instabil- fitted ski that the Fourier t tailstliit of . V I) 0 I

ity. Ref. I. it was reported that ats a parameter if thle ('c,I)W where P,~ is the itriet- t ranisformt clii'th.iiiI

system was tnt-teased a sequence of period doubling hi- of V. lIn addition, noitmlia /.t tons have lien-n ttttriicilt

lurcaliiins Imaditig tii app~arently c'haoitic sotlutiostoo1k soii s to absitrb anyW Iaraititro dii ,te'tdi'iie' A liii (-

ploe. It was alsii otbserved that periodic sotlutiotns i-c'- efftt-iemts of! the vartious tr'tii tit Lot. (1). \%( ii-% .l i,-

etiictrKed tro tinela is (tangent bifurcatitons) and existed sidet- (antd subsequentlY justit i) ;ii alilit-l\iii'i '-luiti
Iv sr narrow ratnges iif the varied paraniteot. These sit (1) fot- Muich E- cotists sIt tee' trai m'linc. (il S

ho aluitcs we reo titerpiteted on the basis iif it uitt(rtil Iv Fi 6 I M F,(expt (k. -i ..
ihitattn'd. onrili te- dintncrstitnal 111p,) Ilt cotl i-.ist

wkith tis privtos wiirk. ii tit' present paiper we atn' , (lhsxpf?,(k

-'I .. 
1
y ... nts 4tl ip si t~n o A tro lw i (t -It tt t tt it tti t)t tAH. i I *



-t.=. Int roducing (2) in (1) and takini' the kv, kr, aod decay wave damping rates divided by the puip wave

k2 components of (1) we obtain growth rate. Likewise, 5 be 0m1e the IrequtInCy i11is-

0 
"
-? (k,)F + d E Y , * "2 match normalized tn the pump growth rate. Hence-

Eorth, we take 1. In what follows we make a further

2EJ'l-'2 exp(2 , (3a) silmplfying restriction; we assunme thilt '2 (e.g.,

E, , - (k)F; , *[ . v. v. consider Landau damping of the sidebands in the case of

an even electron velocity distributi,,n function with k,1
AP -. exp(-2i tI)l (3b) -k z ko). In this case Eqs. (4b), when multiplied b

E2 (k2)E2  i
t

l, + f al.2 and subtracted from each other, yield

+ Efr." exp(-2r '4)l, (3) (a, - a,) -2" (a - a')2
where ,5 (A 1 + " ) '2, arid A', dAdE 'dt. (These equariinsw le r 5- 0 + 2)'2,an (Teseeqatins where ) ";l = )Z. Thus, (az - a12) decays exponentially

can be solved analytically2 in the case (kt , 1. 2) 0. w - h
with tinie. Since we are particularly interested in the

%%e now discuss our truncation of the nonlinear Schro5- hng-time behavior of Eqs. (4), we set a, = a z from the

dinger equation to just three terms. Consider a system outset. In this case Eqs. (4) reduce from four equa-

which is periodic in x with period L; then, k -- 2nn L, tions to three equations:

n - t, t2, . . For example, we could take k0 to he the

wavenumber of the fundamental mode, ko - 2t 1, cou- <o - au + 2aoIa sin :, (5a1

pled resonatly to a pair of shorter wavelength side-

bands, k1 =2rn 'L and k. - 2r(2 - n)'. Our use of only -v0a - a'a, sin

one set of daughter waves (i. e., one value of ) night - -25 + 2(n2 _ a) 2(2, - a') cos . (5c)

be justified; for example, if other sets ,f daughter

waves experience much stronger linear damping. More The rest of this paper wilt be devoted to a discussion L

generally, in many physical situations described by Eq. the properties of the solutions of Eqs. (5). Section II

(1), a proper model may require one to include addition- discusses analytical results which cart he obtained from

al daughter wave pairs in the decay process, thus re- (5). Section fI presents numerical results arid discus-

sutting in a larger number Of coupled ordinary differen- sion. Conclusions and summarizing remarks appear in

tial equations. Nevertheless, we believe that, even in Sec. IV.

such situations, the present analysis may be of some
use in that it illustrates, at least qualitatively, a tytix I. PRELIMINARY ANALYTICAL RESULTS AND

of behavior that may arise. Accepting the consideration DISCUSSION

of only one relevant linearly danmped daughter- wave

pair, we also need to Ctosider the k comiponeits which A. Phase spae. contraction

are generated when (2) is substituted into the nonlinear Let h o a2 and t - a
. Equations (5) thenbecome

term of (1) (i.e., the term .EI
2

E - .
2 
F , where E' de-

notes the conjugate of E). These k components are just h0:2b0 + 4bobt sin t, (6a)

the original k components (k 0, kt, kA2), plu- four addition-

al components: b - -2bi - 2b 0bt sin , (6b)

2- 0 , 2k 2 -k,. 3k 1 -2ko, anid 3k,- 2 4-,. t4 =2(bl-bo)+2(2bt - bo)c o s 9-26. (6c

Equations (3) represent a s.lf-consistent solution of (1) We view Eqs. (6) as generating a flow in a three-dmnen-

only if E, is negligibly small for these additional k val- siural Cartesian phase space, (b 0 , b, 9i). By partial ditf-

ues (i.e. , the additional k con ponents art strogly ferentiation of Eqs. (6) we obtain tht divergence of tile

damped). "velocity" of this flow,

Introducing amplitude-phase variables

E. = (t)exp(iM'J (t)), a =0,1,2, where a. and J', are re:l, n I .. ... 20-1). (7)

Eqs. (3) (which are three complex equations) reduce to Pb0  b1  30

four real equations, Thus, the divergence of this flow is a constant md is

all oao + 2aoaa2 sin '4, (4a) negative if 1, > 1 (i.e. , if the damping rate exceeds th

growth rate). Therefore, any volume in this phase
2a, =- 2 ,*,- azoa2. sin e, (4b) space which evolves under the flow generated by Eqs.

2 2) (6) varies in time as V(t) = V(0)exp[-2( - 1)t. Here,
2 !-25 4 ((4 + a - 2a) *[4at, 2 - ,(I1 cos',, (4c) we shall only conaider the case 1-.1 (Saturation (of

the instability was not found for < 1. ) In this case

where '(f) = 
2

"o - - - '2 26t, ) 0 - -) (k),) 1.2 (k, 2),  volume.- always contract exponentially with time. Thus.

and we assume that )o, ) , are all positive. With this if the solutions remain bounded (i.e., the wave 0 is

choice of signs, wave 0 is linearly unstable and its non- saturated), they are expected to eventually approach a

linear decay wave products (waves I and 2) are linearly confined subspace of the original three dimensional (6(,.

damped. Furthermore, we may assume that the ampli- 61, 1) space which has zero volhune. This conclusuon

tudo's a0 and the time have been nor malized so that 1 0 has important inplicalions, sonie of which are (is-

1. In this cast -1.2 are dimensionless and lecome' the cr.-sed in Secs. i B and 1111).
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B. Oscillating two-stream instability ", -(2 .," +,i
/,: -, (sit "*J"  , Mt,

|Iere, we show that Eqs, (5) vield ti well-koIoe III]-

ear parametric instability threshold condin in h (- j( - .6 1 (

p~u lp aiplitude. In particular, it wIll be sh-i it ha' 1,_

0 is necessarv for tile oscillating two-streuau Ili-

stabilt. Ito exist. Thus, only neative 'l need etI ,J- ia

,tdered in our subsequent discussion. 'lo, obtatin ic a i
tLea parametic instability we coinsiderl. a, (,, iit ,ti'n tt- t d iI , s .ou'

gltc a y olly nit dependence of a, i. . , dis't".al'i thtI
sutVf-Colnsistent evolution of itl generated h, lol. (5. ,I is 31'V 1 iS I.. .r IU I

In this case (5c) becomes ,,. I t ' ( - I, t,'e are ' .tu'nat ,-l ,.

.discus (he sta'tl oc ths, st. t'. , inh, .
'1I this W . lineari/ E sis. ( r A I j' I ,itAiolls all t Li! Il(

Focusing our attention on purely growing modes., statlnar'y stale:

set -: 0, and obtain an equation for cos '1, . b xp(stl

cos -- + (6/a2) . - " + exp(st)

A cubic equation for s results which cimn he mialvid I
Thus, 6 must be negative in order that Icos 

- : 
- 1. obtain the stailit v conditimns for the stat iionar;" stt -

Front (5b) the instability growth rate is - -a sin K (cf. Appenuix). It is found that the sijluti It ccrrs(',d-
Thus, for the instability sin A 0 and a4 sinl

2 
- (l40(I in, tot the choice of the plus sito l. (8c( is aiwxa\s

_ cos
2

i) -)2, which, when combined with the result for unstable. The stability of tile 'eliliiittl
, 

i,,t is s,;iii-

c,,s yields the linear instability threshold conditions marized in the ,- space diag.ram shUIwX in Fig. 1.
(a 2 . - 5) (-25) and 5, 0. While this analysis te-

ghucts the self-consistent evolution of a0, it does pro- Ill. NUMERICAL RESULTS AND DISCUSSION
vide considerable insight into the full evolutton of Elts. In this section we present tht result If it( 'rittn
(5). If Eqs. (5) are initialized with small amplitudes. Eqs. (5) numerically. The rquen(c mismatch is htId
ao will start off growing exponentially at the rate ott, Cnsat. -6, so that we are desrihinc th ehacr

and III will damp exponentially at the rate . Eventually. ot a dynamical system that depends on a single
o 0 will be cionle large enough so that (it becomes tt stab t( e v b c id cnraizestec', ). (The behavior tii be' described ,'.i ate ,
to the oscillatin, two-stream instability; al then grows. other values of 5 as well. ) (See Fig. 2. ) The diskus-
We will find (Sec. Ill) that. depending on the paranmters sion is divided into four parts. Part A ni~ us a brief

and initial condtions, several possibilities then exist
f)r the subsequent evoiution if tie systeni: (a) the summary of our findings aod deruonstrat(s hystt ri.tS.

rmwth of al Ila% not be sufficiently strong to arrest the In B we analze the periodic IraJectorieS USIII4 pi

instability, and uo still grows without bound; (b) thle s spectra and a one-dimensional map defined m the -,ur-
tint eventually settles down to a Stationary state sys- face of section. In C we present sotie general leatu.res

ter even: (ctualeyvsten ~ settles e inytate(ao , t of the chaotic behavior as a functiin of -. This behat-
5 0); (c) the systent eventually settles into a limit

ccle frwhic , and are pe'riodic functions of includes chaotic transients and tangent bifurcat 1,s.

time; and (d) the final state of the system is one i Our discussion of chaos is cotpleted i I) where At i-

which at, and *
' 

vary chaotically with time and ao. t

does not go to infinity. Such chaotic solutions are char-

acterized by broad frequency power spectra and sensi- NO
NO Z

tive dependence of the solutions upur. initial conditions. E STABLE
RIUM ~~SATIONAY- EJN

0OLUT'O O A

In agreement with the conclusions reached in Sec. SOLUTION O)NT STABE/f

hA. for cases (b) and (c) the solution is obviously
asymptotic to a zero volume subspace of the original
(b0 0 b, l, ) space. For (b) this subspace is simply a

loint (the stationary state); while for case (c), the sub-
space is a closed curve which the orbit of the system TAT'/N RY

traces out on each period of its motion. These subsets 1cNT

to which the system orbit asymptotes are called attrac- I

tors. In Sec. IIID we discuss the attracting set for the

case (d), the case of chaotic motions.

C. Stationary equilibria and their stability . . . - -

t,2 S

Ili order to Investigate the pitssibility (if st tiiinarv, I'lI;. t. S i ltt % if th, [t:Ii ,r. iminil t - ',) i ," ). I

tone- independent solutions if (6). we stt b0  0 i lle rninus sign how , in -,. I + I , ,

and iobtatin (cf. Appendix): 1 2-.' .- ti it'1 ti
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I ABLE I. Saturated behavior of systvii G). .SP-stahh- stationiary xmit. >l k -inp. limit
cycle. If more than Otk. tylw of bKhavior is list&-d then tl,.ir art, tAi attrators irt-k nt fur that
range of gamma.

9. 77 -'y tt. 75 :$

6. !% I, !. 77 >3.1.
.2* 6.'7 .6 2-c) -h- r .4 1 I I . I

6. -, li 6 6. 1- Ic or Ll,

6. 7 9:. 1; G. 7965 I-c I -" Lt

ii. 7')" .95 6. 79) 5 - , - ',t' ,r S I '

- 6. 792 7 1o-' ' 1 , r 51 I "
G;. 6,2 ," 6. 7,92 3( h o -1 'I,> ; . , S , G. (?•6 5)

G ; 7 G. :161 SI.C -.j ,SI

6,1,7 6. 16 2-c cIt w I<I

o5 "y 6. 06 -" -cyt' t ,r >
4;. 0351 1; " C" .045 Iv ,c l ,rx i~
6.134 2 y 6. 035 51 -lvcltr $5 1,

6. 034 601 T 6. 0:4 81 3 yk-tyI" or S. P
6. o1.4554; Y 6.03-110', 6 c-ic or . 1,

, 4;. :tI4 555 12S,-cvch' or 5S1,

.5 " 6. 0:11- 54 Cha i -or 551'

V 1. 5 . Chaos ,,r 5 '-

'V I.'l' - Ivt or
S 1. 75 2- cvtlclr . I'

I.o5 "Y 1. 70 "-' SIC i,":>t >- I 9

r 'IA* I lopf, 1. . ,.1. 3)

es from a linit cycle (different from A1) It) at stable generate a sequence of points ao(t.), am(i!/, where f,
fixed point as - decreases through the same range. AI is the time ,f the nth piercing of the surface of sectimi.
is absent ani A2 is a point if 5.55. A2 is absent These points represent a cross section of the attractr,,
and Al is a limit cycle if " 6. 84. in the long-time asymptotic' limit.

Suppose we choose a value of " for which both atttrac- l1,[ab(t,), a,(t,)]-[ao(t.i),at(if)

tors Al and A2 exist and pick initial condi tions onl AI.

We allow the system to evolve in time and slowly le- ins ona map d i ) Thi ivardiblehe
crease ) . The trajectory will relain oil Al unlt this () islia m an ,s nerl ill.rtlilcause (5) is a system o~f firsl-orde. hirdlnilr (1114h :,i-
attractor vanishes at 'p -- 5. 55, then the trajectory will hal equations.
be drawn to A2. Apparently, this is because as - ap-

proaches 5. 55 from above, A2's neighborhood of attrac- It is often observed that the orbit traject,,y v 1t- Socl
tion swells to intersect At. Initial points that woluld be the s urface of section on what al)pears (at ,ast a
on or near the strange attractor, Al, for " -5.55 con-
verge to A2 for "p 5.55 along trajectories that wander
chaotically for a while as though At were still present. 0o
(See See. IIIC for a discussion of such chaotic transi-
ents. ) Increasing 'p to its original value, we will have
changed the state of the system from Al to A2. By
analogy to magnetostatics, the existence of two states
of the system for a given choice of ), or equivalently. q I I A

the dependence of the global behavior on initial condi-
tions, is called hysteresis. 3 [Notice that from (6) we A?
have a :- 21 for all saturated states of the sys-
tern. t H..H

B. Period doubling bifurcatiom

Figures 5(a) to (c) show a1tQ) for three values of , il-
lustrating successive period doubling bifurcatioms. r
Three sequences of such bifurcations, beginning with at _ , , ,- _

simple limit cycle, have been ohserved for 6 - -6 (set, ,' 1 4 5 t, 7 8

Table 1). To study these bifurcations, we rect'od th FIG. lb >1 rs ie Ille long-iIn,, ,v i-rat of a %-

intersections of the trajectory with it - constant plane. I I I - chrlot hot:,ior. - - limit , ....

This plane is our surface of seclion. lr defllll ienss, stlh 'upii-r\ point. H inditt" Ihl hil.:1ion \1

we keep only th,se points for which -0. Thus, w in A ' if-' hIwi'Ik iS, in ll(- thxt i.
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FIG. 6. Construction of the one-dimensional map. F, fror
Fit. ,4. f P llt .91r1:ing .uc'.,silve p,,rixi touhliig hifur- points in the surface of section. (a) surfacc of section M id
ctia . an ) - Ii. 25. sim'ple limit ('vi,'l, ) 'V- 6.12, )) one-dimensiona[ map, F., constrcted from the : i- t I
- -v( l,. :ld - f.i5, a l-,,vile. in 5) at y 6. 03i7. c) F, for the 32-cycle it - 6. 791 7.

it rst aI)pi ,xiination) toihe a siniple smooth arc. In for each trajectory in (no, a,, u) phase space that we

such cases it makes sense to cronstruct a discrete one- wish to study using F,. For all of the periodic orbits

dimensional map, F,. from the Pinc: .c map. (F, studied, this discrete graph appears to lie on a si mpl'

plays a fundamental role in our description of period smooth curve in the (0., 0.) plane Lcf. Fig. 6(b) and

doubling bifurcations in this section and is used to ac- (c)]. Furthermore, this curve intersects any 6, ,n-

count for the tang~ent hifurcations fro m chaotic to pert- stant line in at most one point. Therefore, we dehin,

odic behavir described in Sec. IIIC. ) F., to be the simplest smooth interpolalion of the di s-
crete graph [(s,, ¢,,) such that

[o"r manv-lines bifurcated periodic orbits, this arc

has a roughly sUnicircular shapt . We choose to adopt F,(d)

1 lda r coordinates in the surface of section tcf. Fig.

6(a)!. This turns (ut to be it good choiu'e lor defining This gives us a well-defined, i.e. , single-valued. Pnap

) I , may then be written as I',(p,, ,,) - (P,,I, 6. i), for all trajectories observed to be asymptotic to , pri-

where (i,, ,,) -I (l,), .(I,)1. Slij o)se we restrict ,our ,di orbit, provided that s,li , of the early tr:0ltn ti
alntion to the coordinate , and iraph I,.1 versus 1,,, tu,ior is ignorred. It is understood tha'0 l ir
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.iiiu~h Voitns fit i ti lscreteL~i tit niake tILI miii- ans;.t ivtti ,

p I aLt I il re It ; of Ia b Iu u I a IIII ti t )Uo s. I i, i v i I III, , " F I
ticcv-ifurci.t('d simple limit c *t i It iwi-sco. is tit Lll- 2
Lice If Seuinl 1:1 'A ii-o trPints. N. ilhts . ( ') 2,* dh

,A t .-.uw t att v ii~it p, F~,, it iiiis " - I- cI.-" isjpi Miiw s t r ll to I II 'l -- L I

Ii, iti that 'Xitrit is lilt re cionIi; lio iii, dtntiui-u at t~i:tn r iu ,j t o LiSirljlcini 111l).

tifUrI, ariutis If till ti C~. alv 4. Till. ;.Ssliii) I , ~ i.- . s hch cc a, d , , .tic( iitl
suppiurIvd byv the transiet behtta ri I rajit ii~ii~~>l ufii it Ili 2' pu.. ii

tivu 4- cvcle: the vizejidicttialilIjiii5I i 0" I-it i iLI I uiii~ct-I~ 1p dis, t

gicrl Ilep~i ( J ,r i ltiw, JIrs rejIrisil. vfl" I Iabh fi'nut points that !t-i~~ Li h
lilt e It I, ill hiigher thiilrkAtil ii.-. [I i1k0 1 -. i ca~lled 1 "2" t -I. I A, .v

the cunistructioni If F, is illusiratcki Ii Fit.. I'. I\\ , I F: > app)Lriac( --I f r :i I it1 t -

r-jUire 'onlyV that r) -- 0 hle "Inside" tlhu .011'a( 1ti ilk 1: oi it piit a rei oblsetrvedtt (I i i i ,I c

tile suface''A ecitwii anid that - 5'ib chiisnf , f AI(Ci :';Iti ab)(ut, thle stattiv fixed ai.AS

petriliit (iitsirtitiii (if i Vil-~ltit,. This %tits A- 1trt , e-ti Irredtucitite fixed inO I-

pos sssitile for il( cases stuti dt. OtIkrlwise, tit- sihrit lufrvAitir , 1w I~k f he. 2 ia- i

k i I ik f lrigins fir 1) arnd !,dis i) :iffcct ttie tuitiai - IrrhI .Iitt )lc fixed jl I of' oflits , FI, Fl I c.-: 1.

fool of F, as is S prtains 1to thle bituicati n ji iioii-fa to) lustra.tiit in Fig. 7.
be described. Ft ivntaurii has conductet 1heir, tn-at im.tudtis

The maps. F,. are not inver-tile: ivk, tiltcrcit .'s ilass of mic-diriiensiiinat iijs tuvn-u a iu-
are miapped into the &lane .'.Ini tilt- chadtlic rctimts, mumi iant dtepending oil a sin 1( tariniit 1. 1,(),.1

whelve virtuallY tll irttc,-iiilatiur ' i rt'u'red, ttis appar- dp l).ir 1)tt tiloii1 , to this ,t 5. *Th s(' uIlap iiii

bitted with !he niw-issarv i overt iihl P,) p4 rplics anl IIhi1 in SCuueIIIe iff )ii d i utul i hitur(.i~

that tie *arc Ini tit Sul f.ice of soctlli in t iai tI, lii I .iiiiltcr aippritoah a it .tIc1 1 I i, h.

Nmirdttt: if pint it '1ii ) 's and iiI t th . ii111 !t kL 'I C i r. . i

then p, P"~ Tt tucturv wit iiil tile .irioiri v ii urit results.

r:e(asi of chh iii itllin 11 is uisius:-eut III c t1ll). i t i vtii iatl 2' iI i
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, ti he't n sequcare i -It p.~mii ..... p iviits(r I. , h oitape !itu.o 7a . t~i Il

1tr1l i lntt;s 1 rvd t tt i, I. p kt, uitf x. fis : From Fi Itii.iilI it is via t!. \ rh ii isI s
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II the simple limit cycle at V 6,165. Arrows indicate the convergence of transient

points. Ie) )4 when D,42( 1) 0 defining d}
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For large n these two pairs are also in some small If F, has a quadratic extremum, then IF,(,.i) - F,( )I)
neighborhood of 0. When ) is chosen so that - 7- " I' - (dn,)2 and IF(,b" )- F,(P;")i - (G.) - (,

F0 j= 1,2,.,2, .i and 4. ( " and ,). But, F,(5"') and F,(0 1 ) bifurcate from F-'(-).
4t) are separated by a distance .t1 (d"'). Feigen- Therefore, the distances. ", between o's near F,( )

baum's theory determines that for large n, d/4' "-a are reduced by a factor of 2
2 upon bifurcation. In gen-

constant depending only on the order of the extremum eral, the d's rescale under bifurcation according Vt a

60. For those 0,* and (. nearest to 0 the theory pre- complicated function' of 6. However, for large n, a
dicts that first approximation to this function has half of Ihe d's

lim (dId:)= 2. 5 029... rescaling by ey and ha!f by '2 (cf. Ref. 5).

,- This rescaling has important implications for the

for maps with a quadratic extremum. In other words, spectrum of a highly bifurcated limit cycle. Let A'(v,)

the distances, dP, between ,h's near 60 are reduced by be the frequency spectrum (if 1 2' cycle. Lg,0 A'(A)

a factor of a upon bifurcation. has pronounced peaks at v w ,(k 2"), k - 1,2. . 2%
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1 'r sonle ). Let A: A*(.)) denote these, cop ,ft t- Lach *f t he ifurcation sequessces desc ribed Aip AS

of thle spectrumo. Feigenbaums shOWS' that 101- ?1 sNfll)- culminates in apparently chwitic behavior. In principle
totically large, this chaos is a product ')f infinitely many period doub-

p , 1. .2lihgs as -. approaches the critical point I'_ and the
!A",,, k 1,2 . .. 2'. period of the motion diverges. In fact, when -,is just

Here, A,' 1 2 is obtained by smoothly insterpola~ting the beyond the criicat point the power spectrumi,
od i k cunopooents of A"(w.) and , =4(11[2(1 -2 " 2log,, :A (,,) 1, may be thought of as a superpositsii of

-6. 57. . . . Thus, in the limit of miany bifurcat ions the two parts. One part is discrete and conisits ',f I finite
odd subharnsonics of the spec trums tend to be self-sioi- nunmber of sharp spikes. The other part is cooit iiu 'Us
larly reproduced. For sequences I and 11 we calculate as a function of w. Thle spikes achieve a height ahb vs
an average odd subhfarmionic resealing factor: the erratic. or "noisy,' p~art of the power spect Iui;

they are evenly spaced and correspond closely t., the
Iog5 0(p.)il: Iog1 0 !A1 - J-IogsI0A*21 I - 'log,1 A! taller spikes in the power spectrum of the periodic In.-

dd* tion observed just before -, moves through Y~. I his en-
fur ni =2 through 4 and 6, respectively. We offer thle durance of the stronger subhlarmionics of the periodic
averaged values of log1 0(p.) over all bifurcations of the
sequence for comparison with Feigenbaunm's result, (a) 4
log, 0 (p) =0. 818...

Sequence I: Ulgto(p.)).- 2.3 .41 0.82, 72s
10.83,is 0

Sequence II: (lug 1 (P-)).- 2 .... 1. 832, h, .-

[Here iso. indicates the spectrum of ua,s(1l. -2

C. Chaotic behavior and tangent bifurcations -

The tong-time as *ymptotic behavior of (5) is said to te '0 10 10 0 43J

chaotic when tile motion is not discernably periodic.
Nonperiodic msotion is observed to be stochastic: if two (b) 4

initial points in (no, a,, t0) phase space are chosen very
close to each othser, but not on the same trajectory,
then the distance between thenm, 6x(f), diverges expo- 2
nentially fast imsmediately after they begin to move

along their respective trajectories,0%lI A

Fventually this exponential divergence saturates abrupt-
ly, and 6 x(f) becomes an erratic function oIf time (see -

Fig. 8). 
_L_. L

-4

, L

10 20 30 40 50 i IIjti.sL --- 0 0' 20 '2 40
FIG. 4i. Stochist cityv the niturast logarithmn of thv disi mci',
ArmIft, I 'stween two, initti altv verv clhose I)i~nt s when 5the lonig- Fl(t. 9. tsiS- psr iol)ic c haot ic behaior - 5t(, pow r i' ,et 11ms.
time asviliptotic' behavior 0; chaotic. y 7. 29,s tnutiaix , ltyg" I .') , of tihe pumpll %k.Ive Impituti' at , :I (1,1;,
Ail ft oscillites abtout :in averaige v~uims that tiv,'ri expon- (ti v h. (1';-25, andn (c) s- 6. 412!t1. ev~w, ,
enti:,t in time'. lioi, ,-t lwo's rmt ts i ttc:it 0;)77l t, 11' 1.
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miotionl gives the onset of chaos a "quasi-peridc c ha, of the stable fixed points of I.' it- du :alti i: i t:, s
acter. as shown in Fig. 9. The average height of the "caoi trninsi~dpnl esii.t i.li'ittj

noisy part of the power spectrum increases as )moves point choseni and onf . As )~ ippriiacfx ' , fr 'ai hel iw.x
away from r, into the chaotic regimec, but the heights the attracting neighboz-1ood of the fi xtti jr~iis dx mm-
of the sharp spikes remain approximately constant. ishies, and the transients tend to lasitngr
Consequently, the smaller spikes are successively lost Chaotic transients are( also observed full wingi the(
in the noisy part of the power spectrum ,is nimov.es be- disappearance of the strange attractor (tabwled Al in
yond the critical point. Fig. 4) at 1, =5. 55. For -, 5. 55 this attrictir cot x1i.ts

The chaotic regimies are punctuated by. sudden appear- with a stable stationary point (A2 in Fig. 4). As -, 'il-
ances of stable 3- and 5-cycles. These periodic orbits proaches 5.55 the neighborhood of aitructio in' 11we
are born via "tangent biturcations"6 when FV1 is tan- fixed point apparently intersucts the. strange .xlracii'r.
gent to the identity, , ' ,5,.& as in Fig. I10(a). Peni- If we choose ant initial p)oint Inl (10, ell, ') phill SIA C
od doubling to stable 3 x 2' and 5 x 2' cyctes occurs as that would lie on Al for ',-5. 55 and evolv e tl;e Ssst ;i.
described in Sec. 1111 and eventually results in a return in time with ), 5. 55, so that Al does not exi, llo'
to chaotic behavior. How~ever. it is observed that these immediate subsequent behavior is as it Al WvtI-C Still
3x~ 2' and 5 ,2' cycles exist unly ovr a very small in- presenit. That is, for )slightly less than 5. 55, 1 ransi-
terval in (e. g..the range inI ' is less than 2 -1 04 for ent points are distributed along an arc ~N the SUIrface of

the 3 x 2' c 'ycles). In the chaotic regi me following se- section that is niearly indist ingul shoible troi the inier-

quence I the miap, b,, develops an inflect ion at its section of Al witht the Surface oif sect m'i obs" rved whenl
mtninium. This new local maximum rises With Lie- -, 5. 55. The duration, if fluis ('ha'itic t ransilt depenids
creasing )to intersect the identity and terminate the striingly i where we choose the in1ti.11 ~oint onl thle
chaotic regime. This is shown in Fig. 10(b). The sin)- "remnant'' of Al. Eventually, the( t ralfcto'C ('inverlcis

pie limit cycle that begins sequence 11 is thus 1-.ini bv to the stable stationaryn point A2. S 'ine exan p)es of
tangent bifurcation. chaiitic transients ar-e ilIlust rated in Fig. 11.

Suppose a tangent bifurcation to ai stable k, c'cl It'ut- D. A strange attactor
curs at ),such that the behavior is chiaoitic for - , Bfrainsqec I ovr(sI ,t !ltCh
when the attractor intersects the surface i'f suttliin hBifratio sequencTe Illovc ergasior-I is xa 'ii h
sonme arc. Then for ) ), trajectiories are iobserved hairt -1.0,Tecaiicbhtiisvr

to puncture the surface chaotically loing thie arc until
the intersections fall within the attracting neighborhood 2 5V

1.0

-20

20 -IC0 C 1.0

(b)

20K a ~ 5
200

' 4'

-4,)

ii~~~ tionli 1),oint at. . C 1 0 i Iranii l i oints inI ttw~ i 1  of
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short-lived in-, (ci. Table 1). At these smaller values Attractrs having Cantor set-like scale invar iaiice arc

of the system evolves more slowly in time and is among the earliest theoretical examples of strant,, at-

globally much more sensitive to initial conditions. tractors. ;0.11 This structure has since been observed

Possibly due to the slower contraction of phase space numerically in the strange attractors of some t u-di-

volumes, the attractor inter,;ects the surface of sec tion mensional maps used to, mo)del dynamical systen, 11.1'

in an arc of easily discernible thickness. To compare the structures of different aitra(c r., we

On magnification, the attracting arc is seen to be define a fractional diinenlsiin
I4 as follows. Lit .\(,) b,

made up of several closely spaced lines some of which the nllimuin number of cubes ;f side length - rtr1kni od

appear to be thicker than others. Higher magnification to cover the attractor. Then,

of one of the thick lines (cf. Fig. 12) reveals the same log A'f)

pattern of lines as was found by the first magnificati,,ri 1). lill 10)

This repetition of a pattern under magnification, or . log(1/)
"scale invariance," is also a property of the Cantor set. is the Hausdorff dimension of the attractor. Tt, I it

(See the Appendix for a definition of the Cantor set. ) the attractor to within the precision , we need .\ i t,

of information. For small c, J (E~r
"). For examt i

tI the dimension of a point is zero [N() 1], that f ,

1.3 closed orbit is one [(W)-C"], and that of the surface I1
-- 2a three-dimensional sphere is two [N(~ h- 2 ].

12

For most purposes, an attractor will be said to be

I strange if its dimension is nonintegral. The dimniftiso,,i

o, I of of the Cantor set defined in the Appendix is log'2)
log(3) = .0. 6309.... In an earlier paperB we ustd It-h

0.9 definition, Eq. (10), to determine D numerically f,,r the

chaotic attractor at = 1. 805:

) - 2.318 ± 0. 002.
0.7

_________ As an example of a set with dimension between two and
2.0 2.2 24 2.6 2A three, consider the union of concentric spheric:i sur-

00 faces in 3-space whose radii are the elements o tIhe

(b) Cantor set defined in the Appendix. The diniensi ,n ,f
I this set is 2. 6309....

J.B The dimension may be related to the local stability of

I trajectories on the attractor. Let 6x(t) denote tht .

116 tor displacement of two points in phase space that aret eF
S-evolved by Eqs. (5). For L5x(0) I arbitrarily siall, wt,

may assume that subsequently

1.14 Ox(t) = A () 5x(0). (11)

Writing (5) as x =G(x), we find

112 A -DG (x)' A ,

240 242 244 246 248 250 where DG is the Jacobian of (5). Let [>,(). -I 2,3'
00 be the eigenvalues of A(t). Then.

(C)
X lin In I v(t)W 1 , i 1, 2,3,

1156 .-]

defines the Lyapunov "type numbers""
' of (5). One td

1155 these, N2 say, is necessarily zero. [T) see this i,twe

that tile distance between two close plints on th. Simile
01 1154 trajectory varies as 1(;kA)I. I From Al1). pha .o spa(ce

154 volumes contract exponentially at the rate -(tr p s - ,

so that using (7) we have
1.153

X1 +  '\3 - -2('0 - 1).-_ 0. (12)

1.152 For stochastic trajectories one ot these, X sa , is

_ greater than zero. [This is the sane , as in (9). I
2o460 2.4615 24630 24645 A conjecture has recentlly been made relating the lm'i-

puniiv numbers to the dimiension of a Stlrangc attractor.
H(;. 12. Scale invairiance (if the strange iitti a('tor it Nr 1. ',: For i- etiiIsoinal phase 'plce [tits cionje'tutire is
i a) tht atirating :irc in the sUirfac'e of section, it, 1,nl:rim(,
ment of the smnit box in 1 t :0. c) enlargement of ttc. "i:illl ' 

"
I

box in t1) 1.
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wh ere A, X A, and k is the largest integer for
which ki +-A '-+% 10. For the present s',stool kWEc
- 2. Aided by Eq. (12), we have found the Lvaptinov
numbers numiericallyt 5 :

0 L - 2. 317 t 0. 001

so that 1) 1), to w ithit the )btalied accuracyN , cinsis-

tent with the conjeclue 2 +

IV. CONCLUSION

We have miodeled thei nonlinear saturation of the os-
cillating iwo-stream instabilit '% usiod, a thi-ev-dimen- I 1C13 in0 idtfigtletk

sional dvnimical sy' slem resulting fr-om ;a trunciationi of oci-ernigt i

the nonlinear Schri~dinger equation to three mtodes. A
discrete one -di men sional map constrkuc ted numerically Eq~uation (A2) (-an be ;solved p i-v idol
front the t rajec tories desc ribes much of fte global be- 3 4A
havior of the system in a way coinsistent with the genel
al theory of such maps. ]in particular, we li ad bifurra- Witlli (A31 enforce.d, we see i r 'a F iI. (13) that (A21
lion becquences of periodil, orbits that are inl rood (tuant- has two possible solutioons, 4'. .. I-, i I 2.
titative agreemient w ith the theory. si,;: ' 0, so that -:is an admissible: slut ii ;i t(A (.'%,

Chaotic behavior is observed to take plaice on stz-an-c .isado: .ssible pt-tv ided

attractors having Cantor set-like structure. Our- mud\
of one of these attractors stroingly suggests at relation- .2 .~

ship between their fractiowial dimeonsion and fte liwal whch ,i th e~plwS it frI Sinl I JIOVc,

stabilit + of their trajectoies. Such a r(I-ahi istu;eail seen to tbe salisfii'd rq ali .Ti, r, e
would be impojxr tant for the the itv if di st ribui i ii to! o-

tios o srane atrctos.are t,%o stathonary points of (61 t, - Fi
tion onStrngeattactrs.(Al) we finni
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APPENDIX 
S

1. Stabiity analysis whtere

Thi fixed pimnts (h,*. i.-1of (6) are givenl hw2- -)

* -1 sin,4* , bt -1 (2 sin -*IC (2) sin"t2 -->(2 3 ros 2

where * solves al

(2- 0 )cs 2, siin 0, (Al) 0 (8 - 2- ['- cos~-(s

with sin- 0 since b0 . I io . et ( ald for . 2)- Let us wrte (A4.0)

and s
2

jao~j~ . 121..~

Sivo [sZ +. 1)2['t2 (A4h)

where 0 ,, 2 since 0 and I . Th~en, (A) Iel- wtei-e o, is tic io l. ci'imniit' ' ad f rI

cii toes A stationary poiw i,; miltetlY it 0) eat it

sinf-~) ~ , -. (A2) .
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tiVe) for " * 1 "+I if F+" " '{ lih v-I q'e, th,, start '71 :,, (III I,' ~ M +, , cwuld 1)L, t 1,, r, il. ... . ill.'t . , -lilt d .',

point P1, is ust ihl . I, lilt , it Il t It Subilltt q . al , r( '.n tht utmt 2t .",

P[vtttd that this first xcit i.,i d,es rut 1, at -- u., , 1 .The statbitity t,I P.; is determined ewi~trely b% -k + -I

I ly, 1oAIated pollits, itte- rit : th
+ 

w pr c, s, nd.Imilt'Ib e c a u s ~e 0 t ' , , t t -, ! x i i i t . F r , , m ( A -1 ) . o+ - v 0 1 ! i i e d 1 C n t r st.

and wily it, (retenmiber. ) us ,'ields t Cantor set.

Notice that - r [U,3J " , 
3' . i stt ii-, i ,

Ilk uvos- i toIter-,als iditili itt,j w ittitti. a i 'p"
1. e'.. -1" :ccLI by the( la 't,)r 3-'. JI l 1 , 1 , ( , In Itf II , d h..11Ic i

c o s U , 2, , Io-u I l i t i ( 'E . N o t i c .tI , , tt : ii t ,, - I -i , l t I t

[rhi latter equalit) in (AS) require.

In parameter space, ) (AS) are, rvspectivel.

-- and 2 _( 1)'0 +1)' 3 (: -) , -+ a

The stability of P, is suniauried in Fi. 1.

2. Hopf bifurcation 1 :i. 0.usr,,1;1 J "t. , t. 1,Fi.. PMt-lhvs. It
23, 1112 I 19.01.

Hold fixed and let , cross ,me ,f the lines (.-\ ) it M1. . ajbin.ich n.v A. I.. F- .!.! f, l, / i-p .

so that the statinary point I* hses stahility. A.s 77 .;1, 1979 1 fSov. tNhv . -11": P 50, 11 t19!,7 1

this happens Re( )) crosses the orii.in in the positiv( IB..A. ttlHuhermt n tind .1. 1). ('rutchifi.,. Phs. it.v. I,. .

sense, and In(o, I approaches .. ,. (.o, " 0 because 17 , 12 1979).
Im. ,]. V.'vigu~nhatu , J. S,:it. Phyis. 21, ;(i, 1979).

c. 0 only at " 2 . . Under these condit ons, 'M 1. 1" ig.nlua'. J .S t-i . A 7.s 1 i, ' th,7: I.
Mi. J. F i~.,irPh%-. Lett. A 7;, .1

the HK pf bifurcation theorenil states that a linlit C1(-vl, It. M. %:i . Nature 261, 4;--! P 1 .

is b) at :' with period 2, , and radius -rowing, as .1. .- lU. tlv: 1. Yo. .-. 21. Ph, i->

- " . The Imit cycle is stdible (unstablel and tJ. I.. K:, uLin and J A A. Y\or r. (Cmw,:. 1, liPh
,  
- '7.

eXiStS for Re(c} 0 and [te(,) t ii a certtain funti n 9:; 1 19,19).

of . )() ), is I(-ss than (greater than) ze it ;. . The T. anim d': m N. MorioIa, Ph v,. 1,,itt, \9. I i I- -

(calculation of V front (5) is quite inl.)Ived, and details I 4. Sm~ , V,:ti. A1. t:ih. "o', 73. 1,7 ).

aret -iven in Ret. 18. We find that VG.,) .- 0 st) that the 1 h,rd V. tal,-ns. t'nm .i .'i'ivs. 20,. 1'

l1,,pf cycles are attracting for all -,, ()n the critical Ii 1971 ti'M . Ife-nov. Comt'll Jimi . NI:!th, Phi.s, 5o. +,9 ,I. ,
(AS). For ? -- f we hav

e  
isoIated the t T t 'I- ,.- t tti.r ., tv- l h li. , ,O ,

'It.~s Ixtvs,]'tt. A19
nutnericallv; tihte, are indicated I Fit . 4. P. M It'h!I 01 , lrva,1,17 ; I " - r .- :

3. Cantorset 
19t). . Itt.

We construct ai vxatuple of a Canhr sut froni the Anit 45. 117 1!)', I.

interval [0, 1] as follows. First retinoc the opeii inter- i1t. tI s.l i. A ,.-pt,,tir Behar, o 'd to 'l!tV I, ) , , .

val (1 3.2 3), leaving S, [0,1 31 [2 3,1>. Now re- Orti79ar Dif, ' ,ifvnl Fquati-i Spl m t"V, I h4. i~ci n,

mo ve from S, the two open intervals (0 9.2 9) ann (7 9. 1I 1. K iln ni
1  

.1. .. 1,i.kc, tit , . ! ,':I Pilfcr,t, *0

8 9), leaving S,- [0,1 91 [2 9,1 3 
,  

12,3.7 91 18 (, l-',,,timl; d ,o latin I il, '!1'i!tc.

1 !, and so oil. The Cantor set. S, is P.it'jt n an-i ItL. i. \%At! - ic vi .- -\',.i i12. P, •
1979t, pt. 2+

.S "I,,y I : . i 'Its , -I :t nd M . M c'(t~,'.,n. Tbh - 11W, r ,ri'I, ,

I Its .4[ilic ffi m s >)o'ingti 1' , Ivi- imn, 1 I ,.' I,

1988 Phy FI..I -It, v 
)
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So1i1on, kand I nlopheric FHcai fl.

ceolutioce .c the eS 0cct et tieen pecinio ath hlCIeacc Ceeei cl ke.. ,en ec'. i ~i1 Ic .L
tollkei d h% a1 ColhIsionlk daiiice ttii'c-LillisCn el, se(1ete0e1 -11ii~esC lCc 1 i l' pc d all
IIIC C fat iS C CSplanitiont, I C l .cin c Sper cii i .el ochsc i ttion,

I-.'] iRODfL'( 11W tiC d~eieree' .. 175. /lkircci tC til 197":,e

Modification of the Ionosphere ths intense taee.io A~k: 1975, lJ(-'eferc et i a!.. 1976; andi tl others !1 tit
launched from the earth', surface continues tot be ain actis e. 1974: (il cte al., 1975 : Pereira t til. 1 977 i % H i .11, 1

area of experimental and iheoictici1 tesearch: res iewvs can e"l., 1978; Nie hpl.onan emilcdieu,ri, 1978. - (;ceivIc

he found in the November 1974 issue of Rioeje.' iemc' %Vi~ IoeIio, 1978: W'otero( ct eat. f9811.

volume 9. number 11)I. in the articles by Ic icr 11975. 19791. th is paew extteeouin fIainii, e
and in the book by (hereieh 119781, '1 he Important ro~le of teeat reflection point oft the modifier as e. ihe poc ac

nonlinear wave effects during ionospheii. heating is h% n "here the modifier frequency, is c\;tctl\ equal it, Inc rll.isct,

\Aell established, and these effects has e at least qualitatic 'I frcequeency (z 110 in Figure 1). At% this spatial point. it j, \tcll~
explained many ot the observational phenomena.' known IC/iee. 19741 that only the f'eour-sas c oscillot i\co

The purpose of this report IS toI esplt e file possibilit\ that stream Instability can occur. Pres otis th .eories, using three
three-dimensional Langmuir solilon collapsc OcCurs duren Was e parametric instabilities ire appropniate toe spatil licc

ionospheric heating. t his possibiit w as fir - introduced hbs titns somewhat closer ito the earth. including the le~tc'

l'c'e leiihdl 1975. 11416j. Aho eniphaiccthL inllpolilnCe) .Wl1iei the m~a\imum amplitude oft the standing heater 5~

the geomagnetic field. IPres bus analetic theories oft nonlin- occurs. [he competition among three--wasec inicatiocit.
ear was e interaction during Ionospheric modific~ation. is four-es-a e inter-actions. and solton formation at the'e I bmei
summnaied In the %kork by /cler I I 97i. 19791 and by spatial locations will be treated by us in fuitture ss ark 11 ,c

Aie lelgoo f19771. hasc e mainly concentrated on three-wise we numerically solve at nonlinear wave equation for paerime'c
parametrtc instabilitiCs: see, for exaniple. l'iu''iceilc ters appropriate to the Platteville modification fat.ilit\ \k
Wc' in~ kl c1 119721, ( 'hest and I' cb r 119751,. l)a ii~piu and God- find that the Platte ville modifier ssace is intense Cioiielh to.

'nwn J1972). A'rncr iendleh 1197311. and PIce.,i A v it/ excite an oscillating two-stream instability which Cs ees

1 1974J. Most of' these theories hase neglected the f'oir-wase Into a set of three-dimensional collapsing soflons. Fteceise
parametric instabilit,. ailso known as the modiil.itional itita- olf coe~isional damping. these solitons deo not collaipse Cile-

bilitj or oscillating ic~eeetreamn instabilets . espite. the lact Streiph ically it) a singularity. butl rather u nde rgoe a peied

that this instabilits \xis the one disciissed lin the ortgin il viruilent collapse followed by eixponential danipenC e.lit,

papci of l'-d.inc unde Kicc 1 1971 Introducing the significanc cliin,
of parametrie. instabilities to Ionospheric modification ('he lIn the nest section. tike reviecs the wase ee.u~i~iccr kh
fecur-ssas e interactions, %scrc usuaillt ncglected bec.cise tltc describes nonlinear Lin.mitur ccise n the ihec.ec
are quite dilticult to treat analyt Iicall, and bec,iiese the tnagnelic held, and sot\se it forl parowIteeers approe ipl, i
nonlinear satur'atio~n nMechanism elf these Instaibilit ies A5as Plattesille fiCtlitc, . Jn the succ.eeding sctiion. :he e'IILI11 1
unknoss n. The latter difficult y was renieeied by, Aliluii thie gecmragrtetic field are jdLICd: this result s lin t tt~

119721. vcho s bowied that the mod Ulat ienal Insi ibi lit lead lo change in the shape ol thie c ollaipsi ng soll tns buet kloe I)"
the feermat ion of sol itotns - regiolns of intense cca iied electi % ign iihcan t I chiange t(lie tinte. se.:i l ti ce.loa pse . lit Iic V;e.'

hield. which in the unniagnetizecl. three-edimensicinal silt ia s .ecticn. conclusions are presented and the possibi le .ph.
tioin .an collapse e..eastrophicaly lto a singiinrty' like I lion of' the resuilts, to explain ccrtaiti ebsersauion.l Ia,- t.
black hole. In this paper We use the termn solitien it) mean ,, discussed.
coherent, nonlinear entity: this contrasts with certain strict 2.Sot itON COItI AI'SI- Ie;NeiM ( ili . i lo tec 'i t
matherntiaical definitions in cc hich a seilitiin is aI ene-dimen- 1:iH i)
sicinal object which can pass,, theougi 'neither soliton \Aith no
change. The difficulty in cinafytiically treaing the modeila- 'Ihe equations describing the necnlinemi eseilution teel
ticinal instabhility hits been circumvented by numerically Muir waves were introduced hy tae/eeo'eui 11921 ond tice

sols inga.n appropriate nonlinear w ase equation. Ibhis nuine- known ats the Zakbarov equatien,, Fronm No le. /cc cc if

icail work has- been pursued by Zakhiei and cei'weirkers 119781. these are
141kicirmi- tit . 1974. IOceoee,'c' id /ei~he'cc . 19'4I. 1971:

.'sio ret jtph ysie.s De)cpart menft. ll ic rsii c tt ofcic Cooad . flit I (i '. '2 NO tl,; Fix. 1) 11 Ce I-. E I

decr (Colcrado 8OUN11
P'hysic~s and :AsIionnci i tepcrtmleni. I aicit ict' licca. fece a

('it5. Ioij 52242 it"),cci I le~ I
'ico 't-V-gt i t992 lii ihe .5,Ito 'i-Illc ,'ci~ ie ec 4 ti.1i

Papert ntie ie 1,I 5 ic2 tC
itt4?.4t27142 tift.5. teEC it)Oi



%N I A I I II KAI I I SI II IONuS ANDi l0NOi51Hi.KI( HE At ItsGU

Inhc pthvsic..l effects conutiried Ill (4, 0ii h_ t.., c ci,
disetissed~ by takharoi 1 1972. t- m. '1 ,

ri.. isa-ii Ottenllejd thle ejsthiu'I

4.9 Mlii so that the reflection point occurs at 111 elCtII1
density it, 3 x 10s cm -3 approximately 3(W Ism ihos c il

I ig I Sz.,nding a ttpiiern of thie heater cleit. r i eld and earths, sujrface J, =T, - 0. 1 eVi elt.tro.:f olhitin I:CJ'i e 1
di cc Ia n of the geotnagnet ac ield ok ci 11at e ic. A oloraillo. 0 due to its and neutral, (high - treqi tent. aihiphitde dhwit-

ing rate) fi,.2w, 2 x 1o power density iflcnfl it 1h

together ith V x E -0. where Etx, n) is the loki.-freqluenc\ base of the ionosphere 50 AWrn>' ionospheric densits N si.c

eiilelope of toe total high-frequency electric field E " length 511 km. We are interested in the electric field oit itic

-- lK, 1) x exp ( - itaJ) plus the complex conjujgate; Pit 1. 1) is ordinar -mode heater wave at the exact reflection pofint

the des tation of' the ion density from its as crage ,alue it- tv, where w, a w~ 0 Oin Figure l), Here, the heater t,.t ii,

14 ivr~,) 1 is the baLkground electron plasma frecquenr- field is along the geomagietic: field with an effeehisel\N Itinlie

it, (i,) is the electron tinni mass; is the absolute '-IlUe wave length. Trhe formulas of' (in:hurie 119641. takini. ; i

kit the charge of the electron. 1. I i-j is [the high dow I) account the Airy enhancement oft the heater %k.,s e a, shov

I requenici phenomnenological enrgi damping rate (tss ice the In lFigure 1. predict anl electric helid of I .0 V Ill fOi: the st,

amplitude damping rate i the SOUnld speed (, :t(y 1, , )~ incident power density. A naturA meCisuze of the neit

Sit, It . w %here -y, I )) is the electron (ion) specific heat ratio this hield is the ratio Vil '-E'V4 , oh electric hetld enetg

charactertstic of low-firequency oscillations. 1, (1,) is the density to ht-ckground electron kineuit energy dc~nsit\ . tI,

*electron iior) temperature, and x (i . ' 0 and i represent these parameters we hasve W H -4.4-I 10 4 at the ilita

dinmensional space and time, while V is the dimensional time. This electric field act1 s a pkitip or dris er Kii

gi adient operator. M'roughout this paper, a tilde represents, parametric instabilities. i[or the parant-fel s being c~onsidcreu
adimensional variable. While the Langinuir wkave evolution here, we shall see below that this instabilit\ is on -claie

during ionospheric heating i,, expected ft be fully three two-streamn instability involking a !ow IfIequency perturh.,-

dimensional. for numerical convenience we work in Itwo tion which is purely growking. \ke find that a ty peal. eicktrui .

spatiail dimensions. We discuss belowk the differences to he traverses many wavelengths of this liotw frequci: pertii-h.
exspected between ouir two-dimensional calculations and the lion in one growth time, so that the electroits are isothet m i I

trite three-dimensional wave evolution. Lquations (1) and 12) with respect to the low frequ ency response, and %ke must iise"'

have been densed heuristically by Sith/ aund Mc-/ola'utt y, I as in an ion-acoustic wave. O n the other hand. ,
19791. typical ion does not move a substantial fraction of a w ase- a

It is :ons enient to introduce the dimensionless variables length in one growth time, so the ion motion Is adiabatic. Tietl~t
ion collision time is much 'argcr than a growth time. so ihe

(2,kh adiabatic compression is one dimensional (d I 1)and y, (d ag ccettie

IL M, I + 2)1d - 3. Thus 17 = 4. Finally, we need the lowk frequenv, relation
damping coefficient. In an equal temperatuire plasma. this is
usually quite large due to ion Landau damping. lo as oid the:

0. Y) complicated expression for this type of damping. we adort a
3 insimple model damping which after Fotirier transformation

i),tk) 21kic, or Pjk) = Ziki ; this model yields a damping rate
of the same order as the undamped linear frequency.- and hits

n _6(3) been shown by Bardwell and (ioldentin [1976.1 to be suiji-
4 lrf , n4)ciently accurate for the present purposes.

( Chosin theheater field K, in the i direction which is also
E - (~2 \the direction of the geomagnetic field, sve follow Nil hoiiton
77 kmJ \l6MITn . ). al: l. [1978] and study the stability of the heater field by

inserting the forms

- (3)(mX, 1 =4~ K) + El exp (-hiad + Ak

where the electron Mebye length x-, IT ni,ci,2)i 2 and the F!E eP t ci - IV IWh

dimensionless ratio 17 m (yj, ,- y,/T,. With the definitions and tilde III ,
(3). (1) and Q2) become 1 0 t'

n(%.1) =n' xp (icw il x + cmplx cojugae lilth "Iii

fio, + it',]2 - )V -E(x. 0) V tnE) (4) nx )=n x -u -1 l- ope ojgt poit A
progfoni

0:1 ii- V24o,ii.f ViU.2 (5) into (4) and (5). There result% the dispersion relation %o,,i
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vifhereJ

- (r AC (9) ,,

T'he thi cshiold for a purely growing instahilii> is, lfotd bN J /
setting w 0 in 18): this yields (for k kli

or in dimensional units, for the present parameters. Ej 0.6
Vi'm. which is well belows our value of E - 1.0 VIMn. [his
conclusion is, in agreement with the original prediction of -/-

PeriinN and KaoH 119711.
In oider to determine the nonlinear esolution of the

oscillating tsso-streamr instability, we solve the Zakharov r-

equationN 14) and (5) numerically in two spatial dimensions.
[he numerical technique is described by NichoI.ton i al.

119781 and h> .\iitdxon and 6 "Idnan 11978 1. it uses 64 x 64
grids in wase ntumber space and in conligotation space. The
initial elc~inc field consists of the 'pump" electric field Wit'i Fig 3. Contours of absolute %alue ot (:ctti, hield in contigi-ra
wave number zero pointing in the i~ direction, representing tion space at ,,i 4 4 x t 10or 0.01l4s. the spatial regionsh
the heater field, and small random electric fields at all other is that used by the computer program, with I , corresponding to I
wave numbers in the two-dimensional wave numbei- grid. X,- 74001 or L. - 32 rn, and L., 64t ni. Contour 2orcpot

heinitial density perturbation is zero. All electric field the initial electric field energy densitl %4 . contour Iis 11, helo s ifi

components are subject ito the linear damping 1,.-/2, exceptintavlundctor3s3%bvehenm au.

for ',he pump electric field which has zero linear dlamping. the full three-dimensional growth contours. The maximum
This is a model which is intended ito represent the steady vertical extent of the region of substantial growth cain hc
state tin the absence of nonlinear effects) which results from predicted fromt the dispersion relation (8). If ix A, at the
the linear damping of the heater wave balanced by a continu- value of maximum growth (contour 3 in Figure 21 atid studt%
ous flux of energy from the heating facility, the growth rate as a function of 0 ~- tan - lk, we find

At early times, some of' the wave number components from (8) that growth ceases when tvery roughly) H6 45'. in
with initially small amplitudes grow due to the oscillating agreement with Figure 2. This is due to the fact that E,~ 2is
tsso-stream instability. The contours of constant growth rate replaced by iht11

2 Cos' 0 in (8).
at wj - 2.2 x 10' or i 0.007 s are shown in Figure 2. Tlhe At a later time in this run. wS- 4.4 x 10' on 0.0 14 sN
Maximum growth rate, contour 3 in Figure 2. has a value I the unstable modes in Figure 2 have exponentiated sulli-

w, 1.4 x 10 o,.r y 420 s 1and occurs at a wave number ciently from their initial noise levels that the absolute
A,-OtXiS or X 21Tlk = 5.4 m. These value-, are in good of the total electric field. Figure 3. shows regions of subsian-

agreement with a direct numerical solution of the dispersion tially enhanced field and regions of substantiall\ dcpr\cr:,
relation (8). If we were treating the ftilly three-dimensional field. The lowest contour level I corresponds to at luc 0t
problem. Figure 2 could be rotated about the k, axis to yield electric field energy W which is Y4~ below the iirtkil \II

W,,. contour level 2 corresponds to the initial vallic. ;id

contoui 3 corresponds to a value 3% above the initi~i %akb
A Figure 4 shows the contours of constant absolute stluc o

Fig. 2. Contour% of constant growth rate (if electnc field amph-
itiide in two-dimiensional wave number space at ior -2.2 x 10' orI

1)0 (Wt7 s(Growt h rate * is linearly proportional ito th contoil label.
w~ith .oniour 3 Indicating Via, 1.4 Itt0 ' or y 4201 , . The
pioini A," is the maimmn wave number retained bt, the computer Fig. 4. Contours of absolute valuec of electric fivid iii ",\e
program, and coiresponds to k, "k, tl0.0t4, Like~ise. A," cone- nunihici space, the other piranteters h;,\c the sanle %ulkivs . 'n
%pond% ito A, "k, o o 17. The w ave number corresponding ft the Figure .1. %losi of the energy is still in the k 0t mode, not h(ow in
highest value of is 4,x, 1 -00W5. this figure.
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1-ig 5 Contours of absolute value of electn , held in conhgura- Fig. 7. Low-frequency density variation in configurtiion sp,t, 1:1:clion space at w,1 = 6.2 x i0 or : 0.020 s. Contour I Corresponds, at time w,g = 7.9 x I0' or e 0 1.026 ,,. Contour I corre,,pnds ., , ( ,

to W 7.N x 0 '. contour 2 to W4= 9.9 >, 10 and contour 30 Ieo2I.' zero density variation, contour 2 corresponds to no = 0 o2 or

1.2 x 10'-. Other parameters are the same as in Figure 3. = 600 cm - 3, and contour 3 (in four places, unmarked on figurel lnc

corresponds to iino = -0.004 or A -1200 cm '. Other parameterN c:

electric field in wave number space at the same time as in are the same as in Figure 3. c i-

Figure 3. Those modes with the highest growth rates in
Figure 2 have reached substantial amplitudes in Figure 4. have become even more intense. At this time, the toy,
Most of the energy still resides in the k = 0 mode, not shown frequency density variation n (Figure 7) has minima in the
in Figure 4. same spatial locations as the maxima of the electric held

Figure 5 shows the absolute value of electric field in amplitude in Figure 6. This is as expected for the oscillating
configuration space at w,1 = 6.2 x 105 or i = 0.020 s. Regions two-stream instability and the subsequent soliton collapse.
of high electric field energy density W at the earlier time of At the final time of this run, af = 8.9 x 105 or I = 0.029 s.
Figure 3 have become even more intense in Figure 5, while the collisionally damped collapsing solitons are quite promi-
regions of low W in Figure 3 have become even lower. The nent (Figure 8), and have absorbed most of the wave energy
regions of intense field in Figure 5 begin to collapse at this from other spatial regions. The absolute value of the electnc
time, so that at w = 7.9 x 10' or t 0.026 s (Figure 6) they field amplitude in wave number space at this time (Figure 9)

shows some spreading. However, because of the relati% el)
S , - large collisional damping, the soliton collapse in configura-

rt (ion space and consequent spreading in wave number space
is much less pronounced than in situations with no collision-

I V'1  al damping [Nicholson et al.. 1978; N5it holsont and Goldman,
S i' ! h1978].

, The relative electric field energy density WIV', versus ltinc
', I." i '!' ( ";.throughout the run is displayed in Figure 10. After time i,

S" ,- 7 x 105 , the unstable modes take a substantial traction of
energy from the original k = 0 pump mode; this energy is
subsequently lost due to collisional damping. The net damp
ing is always slower than the collisional damping rtale
(dashed line in Figure 10) because a substantial traction ol
the total wave energy continues to reside in the undamped k

.I 0 mode at each time. The collisional damping in this casc, acts,fast enough to prevent the collapse of the %olhlons I0
/ such small spatial regions that the accuracy of the .ompute

code is lost. Thus the computer code is accurate over the
entire length of the run, in contrast to previous %%ork in the
undamped regime [Nicholson el al., 19781.

K The numerical work described here is in two spatial

6 Contours of absolute valtie of lectric field in conligura dimensions, while the actual soliton collapse duning iono-
io-n space at wt 7 9 x 10' or i 0.026s. Contour I corresponds spheric heating occurs in three spatial dimensions. Thus the ,, a

o W -2 4 10 contout 2 It) W - 9 7 , 1l ' and contour I to 4W spatial dimensions of the solitons, and the maximnum encrg
12 1l Other parameters are the sa.me as in Figure 3. density in the center of the solitons, may diltci by Lctors ol
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two or more in the actual physical situation from those
obtained here. Hower,. the time scales involved are proba-
bly very close in the two-dimensional and three-dimensional .

cases.
There has been a fair amount of work on analytic solutions

describing collapsing solitons, and this work is reviewed in

the appendix. Most of the analytic work does not include the

effects of collisional damping (see. however. D y'gvarev ct ,
al. [1976). Pereira et al. [1977], and Goldman el al. 119801).
so these results cannot be dire:ctly compared to our numeri-
cal results.

Before discussing the implications of these resu,lts for V
ionospheric heating, we proceed in the next section to add
the effect of the geomagnetic field. This results in significant
quantitative differences: the overall qualitative scenario. Fig. 9. Contours of absolute value of electric feld in
however, remains unchanged. number %pace; the other parameters have the same v;.thcs i,

Figure 8. There is a small amount of energ in the k -: 0 mode., not
3. SOLITON COLLAPSE INCLUDING THE GEOMAGNETIC shown in this figure.

FIELD

The earth's magnetic field is such that the electron gyro- following replacement of the dimensionless Fourier repre-

frequency Q,. is roughly 0,.1w = 1/3.5 for the parameters of sentation of the operator -V2 in (4):

interest. For Langmuir waves along the geomagnetic field,

there is no effect of the geomagnetic field. However, for /,2 k2- + 3 in sin-0 13

linear Langmuir waves with a wave number component k, 41- to, 2 m,
r,, perpendicular to the magnetic field, the unmagnetized dis-

person relation There is also a more complicated effect on the low-frequency

pesio equation (5) which we include. In previous studies [ Wcith'r-
(3 ? I t , (11) all. 1980; Nicholson et al., 1978; Weatherull et al.. 19)11:

Goldman eial.. 1981), we have found that this Itow-firquen-

Il replaced by cy effect is substantial only in it very limited region of s ave
d ,( 1,- \ number space, with a negligible contnbution to the ocrall

8 w3 I + 3k 2  
-- sin-' t o 1) wave evolution.

w,- / With the replacement (13). the dispersion relation (8)

where t = tan l 1/,,, Thus we include the effect of the becomes

geomagnetic field in our numerical calculation by making the
o' + 2i/A- = u./2 - 19 - 450 sir"

-- ) 14 1

0i ii,.!2 ? -7450 si&

L; ' '' i , ,' ' I , ,,

-I'
Q _j

\.. '-

0 4.4'I05 0.9110

S TIME w t

Fig. 10 Logo, of the relative electnc field energy density K, W.
Fig 8 ( ontours of absolute value of electric field in conhgira- versus time for the entire unmagnetiled run. The dashed line shov, s

lion %pe a t w 8 9 x t0' or t - ) 02-9 s. Contour I corresponds the rate of energy decay which would occur if all modes %keic
to W - I 4 - t .10 onlour 2 to 1W 5 4 10 . and contour 3 tin colisionally damped. The actual decay is slower than thi, heciuseat
three places. unmarkedi to 1W' = 1.2 x 1ll ) Other parameters are ea.h time t significant fraction of the wave energs is in the
the same as in Figure I undamrl k - I) mode.



SIXliiK~ I I -,I si I ioINs N I,Oii iilix i

Thus, in the magnetized case. the unstiahe Is, hi..Irig 1\

streami modes c:in remiain in phase vs ith tire PUriip Ior tha eeth
longer time. Trhis allows themi II ahsorh more of the pump tnhn
cnriigy than in the unmnagneti/ed case: it a -lightIN later time.~ino
when the Wavcs LIo dCcouple from the PUMP and begin J, Ssm

collapsc. they hav\e a somewhat greater inieii,ily than in (he d~ilcO
unmagnetized case. This effeci is helped by the fact thait the dif. -

I I- agnectized solitons invols s the collapsing energy from depend
spatial volume roughly 50) times Luger tian in the ki inndne th
tited caise: thus it is not surprising thoit the iflcnsit at the K Of"n i
very center olit collapsing soliton is, at ger in the fliagnetized Wie
case. tti

Figure 14 shows the electric hield amplitude in %Iave Obsr I.
number space at the fin~il time IL,. - S.9 x 10ll or I- c 029 forj

1-ig 1t. Contour% of consiani grovth raste ot Otctr, reicd ampir. %. Thec chitracterist~c ,preading in As a,,e number spaice due to th: C'

tude in twio-dimensional wadve number %pace at w,.i 2 2 ' to' orn the spatial collapse is again obser\ved. i4;

a0.007 s, in the magnetized case. Growith rate * is linearly Figure 15 shows the relative electric field energ dcnsit (Nill 1,
proportional to the contour label. with contour Iindicating yv,
1.4 xt0 or * 420 s 1. fhte point k, " is ihe masiin Aave versus time for the entire miagneti/ed run. The Ct'Crg, .~
number retained by the computer piogrant. .iiu corresponds io dissipation at late timecs is even closer to the collisional tl.

-.~A 0.0)34. The maXIMUni vertical wAave number is 4," 4." damping rate than in the unimaignetized case iligare 10.
o 2 Octhat this figure ha enstretched by ico o "i h consistent with our previous interpr-ctatioii o at greatcr

vcrtic:at direction. efficienc\ in the conversion of' pumip energy ito unstable l:~

mode energy in the magnetized case, the Ji
The angular effect in the denominators oin the right is nu\& hr aetoiaordfeecs ewe h preen nrk rnc

much more important than the , factor in the nurnerators. ndThe acetwl phsial iuaner difrnebtheen te pint o beg -
The growth rates for k, =01 are unaffected by the magnetic adtecut hilstaionarheefcinpitof grOssk I.
held, so the fastest growing mode is the' samne in the the heater wave. Fiit.t the present calculatioins are per t rna-formied in Itwo spatial dimensiiins. whereas the actuail phisi.
magnetized case as in Figure 2 in the unmagnetized case. Cal situation is fully three dimensional. We do not expect, in\ ,~

Fixing k, at this value, 'analysis of (t.)) shviwi thavt growth oftesaelntsi he irsoi ob icei hn I niiilh

ceass atan agle k/, - .05 adias ~those found here. Since soliton Collapse is, fasot Cdek in thre o ~
With the modification (13) to our computer program. 54C dimensions, the time scale for collapse may be sme\s hat not~

iepeat the calculation of the previous section. Since only shre tafonhebupralyhlsshn acOr of w\~
wive numbers with small values of /, are predicted to grow ,anv 1
by I 14). and since we are limited Ist computer resources to a Second, :he actual physical situation Involves, a back- miodi
grid iof 6i4 x64 points, \,e resolve the behavior in wave P ul
number space by choosing 1., So, %%ith I , the saime is i rn dinshr hihI nooeco v t ~c ? p01

the unmagnetized case. 'I his implies thait the ratio of' the
sides of the grid in wave number %Mpa.e is A,41" - (4.4)2.
allowing detailed resolution of grovlhi rate xcontours in \has e
number space.

With all other parameter% the same as% in the preceding /
section, we repeat the previous cilculat ion Figure 11,
analogous to Figure 2 in the unitiagneti/ed case, sho%%s
contour% of' constant growth rate of electric field amplitude .

in wave number space at wit 2.2 1 to' or t -~ 0.00(7 %.

Although this figure appears very similar to Figure 2. note
thait it h, been stretched by a factor of 25 to the vertical I

direction. I'hus. growth occurs only for- angle, ,k, of' less
than a few degrees, in agreement withi the prediction of the
dispersion relation ( 14).

F igure 12. analogous to Figure 5Sin the unmagneited case.L
shows the electric field in contigurationt spaice at (oI - 6.2 k
10' or i 0.020 s T'he formation . ollap,:ig so ,s is
observed. Note that this figure is compressed by a factor of'
2S in the vertical direction. At the later time wi 7.9 x 1t)' ,
oit , 0.02h .. the collapsing solitons have intensified (Figure
13. analogous to Figure 6 in the unmagnettied ease). Ihle
maximumn cniergy densities here arc actually twice as large its
in the unrnagnetied casec. We intel pret this as follows. In the Hig t12 Contours or ibsott value III cleems tielti in snii.

magneti/ed case, the spatial configuration is mutch more one lion s pa ce at I ,,. 6 2 , to' or rit (Q0 s. for (is niagn, i1/id Cs.

dimensional thin in the unmagnetized case, ht is well known I. oirresnmnds toi I., x, 74(s) o V. 12 M. andt I I (Ip

thait dispersion is more effective in inhibiting one-dimension- Ctou Ian contulliXd t) 14 W - H :, li . ote 1 i' ttieI. xii

at collapse thin in inhibiting twko-dimensional collapse. beni sonipresed iN ., tactor ot 2S in t he e~ idite~tion a
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length 50 kmn rather than homogeneous as aIsumed here. The
effects of' inhornogeneity arc much more ditlicult to predict
thain the effects ol three dimensionality, partiall) because the

1P inhomogencity enters in three ways: the heater wave profile.
tssuined to be an Airy "Unction, is inhomogencous itih a

sc Ile length of order lOX) mi; the heater wave frequency is

different thin the local plasma frequency by an amount -

* depiending on the distance from the exact reflection point:
the Langmuir waves excited by the modulattional intstability '

find themselves in an inbomogeneous, plasma. While it is
beyond the scope of this paper to attempt even it semiquanti-
tative treatment of inbomogeneity. we can make several
observations. The locally homogeneous dispersion relation
for the modulational instability at all levels above and below
the exact heater reflection point can be easily obtained front Fig, 14 C ontours ot' abwilte vituc of electric hield in Aa..c

(4), (5), and (6) of Nicholsont al. 119781 by ,etting A,, nurnher SpiMCC it W.4r - .9 X 10 ,orn 0.(129 s, for the niagnetii,'ej
eas.liere is son energy in the k ii0 mode, not shown in i!

since the heater wave is a dipole field if the Airy inhomogen- figue. te aaitr r h ae sI iueaNt htti

city is ignored) and by letting ,A, represent the ditlerenee figure has been stretched by a factor oi'25 in the %erlical dirc~tion
between the hv-ater frequency Lind the eXact local plasma-.
frequency. The solution of this local dispersion relation then magnitude of the fatstest growing wave numbher with heigtt
predicts that the threshold fer modulational instability, and probably mecans that the collapsing solitons of section I %k ill

the growth rate above threshold, are both quite insensitive to not maintain the coherence over scales of order 1(X) nt in the
the distance from the exact reflectiun point However, the y direction as. shown in Figure 12. However, this would in no
range of unstable \kave numbers is, quite sensitive to the way change the timte scale for collapse. as section 2 showed
height, with a scale length of order 10 m. itus the fastest simtilar collapse time scales for solitons with initial dimcn
growing wave number at the height of" the Airy function sions of' order 5 m in both directions. T'hus we have not
maximum, roughly 200 In below the exact heater reflection reason to think that the proper inclusion of inhomogeneit\
point, is 10 tiniet larger than the flistest growing wave will affect the importance of collapse or the time scales for
number at the exact reflection point. Furthermore, the collapse, it may strongly affect the variation of spasti-M cae
t -astest growing wave number at the exact reflection point is, of the initial collapsing objects. We will treat this subject.
not growing at all a short distance of order l1t in (or aI few and the subject of the competition between three-wave inki
wavelengths) belowk the exact reflection point. Of course, at fiur-was-e processes, in future work.
any location below the exact reflection point, the four-wave Previous work on the analytic study of collapsing solitons
modulational instabilities must compete with the three-waive is. summarized in the appendix. Since most of this\ work doe,
parametric decay instabilities. The rapid change in the not include collisional dissipation, we cannot directly com-

pare it to our numerical results. In the final section. tC
summarize our conclusions and discuss the implications of'
our- results.

4. CONCLU~SION~S AND lIrPIA~ tdOS

We have demonstrated numerically that the ordjnrN,
mode Platteville modifier is intense enough to cause ;it

0

0 4 4 k 10 89-10O5

-it ig t 'oniouts of ahsiiliii satlue of ectric tield in cminigrt;id Iig IS Log,, ofthle relative eleci tield energy dcnsiit~ 1 4
oon sj%.e at .. ,r 7.9 tO1' or r t026 s. for the niagnetiredease versus tie for the entire miagnetized run 'Ihi: dashed line 'ho%&, the
('onhiur t eorresponds ito W 14 -10 '. Contour 2 to W -2,2 ratte ot'energy decaiy which would occur it ,ill modes wecre collision
tW ', and contour ;to 1+ 4.90 -10 '. Other parameters are the illy damped T'he actuat decay is slower thani this becaiise .it t:.Ii
same its in Figure 12 Note thit this figure has been ctmmre%sed by at time a significant fraction of the w;,,c energy is in the iinuaniperd k
fjctor of 25 in the Nertical direction it Mode
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oscallatilg 1' o-stiearitnlisialjlts it aN c\.o.ct icilcction point. work. bath for Platteville jiaramcters and toi paramiirI
I h;,s jnstall sl_ leads to regions o! paail .dl ocahi/cd iiltense new tacilities. I analfly. a, Silated above, 'As \A11 CXvsI al ',p:

electric fcIld vs hi.h be~onic coailsionali\ damped colipjNin. liture woi k the etiects il1 tic ionopshcric: inhomli'gciicai -
's011i0r) I he timie scalei for collapse Is a lc%% mlillisConds. the conlclusion-, of' this paipc! i ogthcr \& ath I detailedlx ~i
[hle Spat i al scale of the collapsing sol to ItS Is"bout I m .along oft the co mpetition amrong I bic -wa se riiteIactions li
the gcontagnict c field, tId. becaLse oi the gcomiagrietic hield, wave Interactions, and volition ollapse at heights bcltcvs OIL

about RK) Ill or less perpendicular ito the gcomagnetic field. exact heatet reflection point.
Ou r results lend in a ntrig i ing interpret at ion to an i mpoi-

tint observational fact. It h., been obset sed thai when the
modifier a(i Areciho is, tlined on. the intensityv of the plasma AII )

line echo is initiall> quite intense lAbldrew 111141 shaolva'n Analyltc desc ript ions of collIapsi ng Sol itons %kere %hovs n%
1977; AlaIdretv, I 978: S/witan and BeinAke. 197h.Sh I,)it II /akharat, 119721 to take the form of self'-similar solution,
fild Kimi. 197$: Feje'r. 19791: this plenomeaalon S cle (SSS). Discrepancies among the results of various ;awltlo
.plasma line ov ershoot" According to linear plasnia theory , ll/oAharov. 1972: Litv'ak et a!t.. 1974: Degivara'i iand /.A -

this result is, difficult to understand, since it requires Lang- htw(J' 1974. 1975; Degt -varev ct a!.. I 975: Mjslitaoio i (
muir waves created by the modifier to travel lip or doiwn in 19751 have led to sorte conifusion in their application. 'f,a.
an essentially vertical direction. Howeer, (the unstable et tit. 119751 pointed out the important role that scaling laok
oscillating two-streamn iistabilit ' i of* the present paper, and inherent in at SSS. play in determining the specir.i tit tron,
the parametric decaty instability of the earlier theories of' Langmuir turbulence. Thus it is imperative to ulse :I SSS w:
ionospheric modification reviewed in the introduction. boith its appropriate context. In what follows, a, generahi.'d SSS is
produce Langmuir waves, travelling predominantly along the developed for the Ztakharo' nmodel (equat ions (4 1 -0) ii 51

geomagnetic hield, not in the vertical direction. Howecvet. out damping 0, a,, 0) for both the magneti/c 1 .o;.

this difficulty does not occur if' oine has three-dimensional unmagnetized cases. All prey iously obtained rcsuli-k r
collapsing solitons. These nonlinear entities contain all wave regained and at unified perspective is possiblc In iddition.
number components, not merely the ones, allowed by, the directions for- further development and applications to re-
linear Langmuir wrave dispersion relation. [blus, at beast sults of' computer simulations are suggzested
qualitatively, the three-dimensional collapsing solitons of the [he general SSS for (4H)-S with u',, (I as, if the loan:
present paper could 'cad to a substantial plasma line intensi-
ty. Although the heating powers at Arecibo are lower thiait A' flo - O)d4f. 0) CAP P f PMl ah,
Platteville. they are still quite possibly high cniough ito excite
collapsing solitons. We note that the collapsing solitons have (1 1) "!1

a frequency spectrumn characterized by the heater frequency 17 (to - 1)y A
(local plasma frequency,). broadened somewhat by the sever- i,-t)"44 I
al millisecond collapse time scale. An alternative explana- fl - 1 )L~ l4i

lion of the origin of the intcnse plasma line using linear wave t Iu -1

propagation has been presented by Mlu/drewi 119781. It is
quite possible that his mechanism and our mechanism occur where E, . .%. v. ii are the dimensionless v artiblex dctick! III I

%iamultaneotasly with an additive effect. We do not attempt to t 3). In the urimagnetiied case, previous wAork. tnirinoitc in
explain here the fact that the plasmit line decays after its thie preceding paragraph, assumed the solliton caalLipscx
initial its rshoot : although the dissipation of pump energy symmetrically. [his is equavalent to setting 1 .7! lit 111i d
due ito soliton formation and collisionally damped Collapse assumnption, substitution of (All) into (4) yields, the tlolm Im4
Could contribute, the complete explanation presumably in- relatiotnships between exponents:
vol. esall of the parametric instabilities and nonlinearceffects
occurring ,at the reflection point and below it Il-ajar. 19791. 2J3 - 2y - i F IA, tic

In future work. %4e will make at quan!;-tive prediction of the l,
p- sma line echo ito be expected fromn the three-dimensional 'Ibis leaves two exponents to be determined. at as ta',e H
collapsing solitons predicted by the present work. and the dynamical eqatation used for the ions, depends, upon lowA
compare it to that observed, the electric field envelope changes in tinte. Ih,

[Ihere are several other implications of our \kork \k hich tioi i&vntinit . The Form avssumed for the ion-ackoisti, c1,ai

can be e xploi ed. First. all ofl our- solitons are observed to equlat ion I5) divides solutions into the follo\N ang regtiaics
c:ollapse and collisionalk damp. We do not obset ye the I. [he first is the 'supersonic. regimc, lot %er. intcnxc C
foirmation of' Stead State pancake solitoits as sitidied h fields I W > ntl.1 is, approximated asN

l'et ahli di 11975, I 97( i. SecOnki I t does (lot at. .c a r that alur 1 i lad

mechanimn will help ito eliplain the production ofl hotl elec- 0,f ?1 1. i(A )

irons and the resultant airglow& obsers ed during ionospheric Su~bstitution of' IA I with .A2) into (Ali a aclds
heating f Via ia/ot 19771. The smallest spatial dimension i.
observed in the present Work IS about I ant or 2M~ A,.. Most ( IA4 i
theories tit elect ron acceleration due ito collapsing solitons ,TeScn %te'rn-Nnc eii.1o esirequire the localization oft intense fields ito sties 10 X, or 2. hescn iste ra-oic egn.[rlssn
less 1,itaro/a' and Le-, 1974. bcar/anu~d IVu~ovs. 197' 1., tense fields, the bull ion-aacoaastic equation is used. \gin. the
It i% niot ait ill clear at this time whet her the Change traim I\ result is a 1. The isat exponent is, also Ldetermincd,
dimensions it) three dimnensions can produce at locahiliion however.

h -ilio 1.We vs ill c\plorc this ques.tion in fatiuirea
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140I tic shape o iic i soliution is, that oit .apancake.' the iate it
in :ollaipsc of* this panc:ake is. twice as fast in the larg-er

on sliinensktfl tranitss it) the maintic field line thtan along
I thc field line. lhu,i during [he asyninieti i. stage of collapse,

.r 10 (ic pancake becomes more svimmnctric. The discussion,, of
he ion dy namic% to determine the'exponent a, and the envelope

4 approximation ito determine 0, carry over from before. Note.
- C 5 however, the form for the integral in WAI changes to include

6 the asvninmetric geometry. In this case, thc assumiption of'

5) conser vation of plasinon number leads to

2s -412D - I) (All)
IT% 0[he general SSS. tAll, include% all previusly obtaiined

results as' special case,,. These results jeg.. Zoakhari', 19721
__________________typically assumed sphenical symmetry and conservation of'

11A14 5 .04 22 14 .. 04C ~ ~l 2.~plasmion number. Computer simulations ILipove 1977J
TIME suiggest. however. that these approximations may not hold in

ngTIE ., the ease of highly distorted structures such as pancakes. The
in Fig. 10 Relative absolute value of electric field .as a fiinctioin of'aymti olpeprmtrs AO.apyt oisi

IS- w it, t for the magnetized run. The cotlap~c time. I,,. I smercclaseprmtr.tll apyt oiosi
I. defined is% iie time at which the coltlipsmtg oltitoin would his a mnagnetic: field. Interestingly. the as~nmmetric collapse mna%

re.,ched singutarity if there was no damping It decreases tov..aid be applicable to higehly distorted wave packets in utinagnec-
ijthe right so that reait time is, increasing towvard the right. The viliie ti/ed! plisina ats well. Computer simulations by P.ri'ir, ci (dI.

re w, t,, corresponds to I,), 6 0t5 to' in F-igiire t1. 119771 showk collapsing pancakes for B,, - 0I with the trais-
n.vet s ditietnsiion decreasing ait twice fbie tate of the longj-

C_ 3. The third is the 'static' regime. I-oi sskcaket fields (V lutidinal dimension. Indeed, this presents some of* the best

m nt/il,Io the density is givein by evidence ito date for differential scalitng of aI collapsing

ni (A 5 Comnparison of the SSS with simulation results presented

In this case, ti - 1/2. in1 this paper is, hampered by the inclusion of damping.
Eli,( iri field e'ui'tloiu'. TIhe remaining exponent is. detr' Qualitativel), we can %ce the produettion of highly elongated

nined by bosw the electric field envelope changzes in time: ill pancakes which collapse faster lengthwise than along fhe
It the slowly varying envelope-if the time dependent equation width. 'I is, is, observed in both the magnetized and unmag-

14)1 is used, then ncti/ed runs.
"I he relative aibsolute value of the electric field is, plotted

IAO) ont a douible logrithmic scale, as a function of At1 I .f,, 0t.

Ibis solution, howesci, does not conscrse [tie first integral for the magnetized ruin (Figure 16). Note that At is decrecis
of* motion. plasmon number; (2) the adiabatic envelope irig toward the right so as to preserve the sense of real time
approximiation-this approximation ignores. the time depen- %kbich is increasing toward the right. Trhe collapse time. t

aj. is

dence of the envelope; the first integral of' motiotn must be defined ats the time at which the collapsing %olitoti would
invoked to determine S. the plasmon number is given bN have reached singularity if there was no damping. The slope

Ig 1 - fE12/')r7 1of the line in the log-log plot gives

2 where 1) is the dimensionality of the system. Substitution of'
the SS n IA7) ielsiTis iestilt is exactly that predicted for dynamic ions teqiiai

lion iA40. A breakdown of the static approximation icqia-
'A6 -4/1) (M8( fion (A5) is indicated, as expected for the large salues of

T'hus. assuming the time rate of change of the envelope is aI electric field obtained. Itis interesting to note that results in
C constant and plasmons are conserved, the scaling laws for (he unmiagnetized case [Pereira et al.. 19771 compare more

the collapse become dependent on the dimensionality of the closely with predictions for static ion%. To make mote
system. detailed comparisons. the theory nmust be modifiedf to in-

The introduction of an ambient magnetic field into the cdude the et ccl of damping.
model breaks the symmnetry pr.'viousls aissuined. I'i'ui iuolt
%-111119751 and (al'i i 1 19751 derived a modified sersion of4t Ac 4noii'-h-dgmhentiI, We thank I) 1- Dtuois, 1. M lkincan.J
to include the weak dispersion transverse to the irnuient A cir K. Papadoupoutos. 1-1 1 , lticscti. IF W Perkin, aind ft
magnetic field. A Rose for useful conseisaftons This wtork was% supporitd h' the

St N at toita t ience -ou ndaion At in, 'het ic Reseat ch Sct,,
.I r I . irii, .%A I.Nt78-22497 and A I M79 tH-N. and h L*51)01. grant D)1

W~h M '' '2761 rsA01 the work ofit tofl us ti (G and J i Is "a,,y~ I ~'~ ,~.:tippoirted by the Nationalf Scienie I ,rot.tinaion Atitiosphet, Re
I j . caiich Section. undei A~ IM79. f61417 and At %j-21mf, hi the Aui

I occ (Mtt, of Sc tent itic Re scit h itindet i nt tact I 4'H1iN I 'ti
For the .ixy imtric collapse. I A2) is trp.icci I, tioti5 and ( % NASA NA(,W 9]t We thatnk the Nationfl ( c-nici I,,'

A5tmot~iphcrit Rceai6. tii ppot Ii'd hi the \at nrmI Sov~ Ii , nd
2j1 - -y I\ I iwn. fur ioimpioit timte iis,fd In this i,c , h ati '.i i Ith, , o ik .,'
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A lasur diagnostic yielding detailed space and time reso1ution of the ion-velocity di.-
tribution function reveals that ions ejected by electrostatic instabilities can form a fre-
quency-coherent tcam circulating diamagnetically at large radii around the unstable
region. This results In anomalous transport with fluxes and over distance scales much
larger than conventional processes.

PACS numbers: 52.40.MJ, 52.25.F

In collisionless (hot or rarefied) plasmas, tron frequency w,,.

transport and dissipation are caused by wave- This process is demonstrated by exciting EICW

particle interactions. Such processes are gen- within a narrow channel in a plasma, and measur-

erally stochastic (noncoherent), as in current ing the details of the ion distribution function

studies' of electrostatic ion-cyclotron waves Av, r, t) in velocity v, in space r, and time t. A

(EICW), eigenniodes of magnetized plasmas with single-ended Q machine' generates a 5-cm-diarn

wide occurrence.2-4 Using novel diagnostics, we Ball plasma column in a uniform magnetic field

have jbserved and maximized a new type of wave- 1 <,B <6 kG [ Fig. 1(a)]. Charge densities are be-

particle interaction in which coherence is dom- low 0 cm-3 , and neutral pressure < 10 - ' Torr,

inant. It causes ion transport in EICW with much to minimize collisions. Ion background tempera-

larger intensities and distance scales, totally tures are typically 3000 'K. A metal electrode

unrelated t j the usual parameters (gradit 3 and is inserted across the plasma column. When an

wave fields), and also leads to secondary wave electron current to the hot plate exceeds 100 pA

excitation. Besides their basic interest, our re- cm - 2, potential oscillations at we w,, become
suits bear directly on magnetospheric transport,2  excited. The very small electron-cyclotron radii
fusion physics,

3 and isotope separation.
4

Elementary physical concepts underlie this proc-

ess. In electrostatic oscillations, half-cycles of (a)(b)
potential rise and fall, which cause particle ac- +V TODE

celeration and deceleration, alternate and nearly CHANNEL

cancel. Transport and dissipation are therefore

caused by stochastic, high-order noncoherent L

processes. Under inhomogeneous conditions,
however, particles can be irreversibly expulsed ----- T-0

during a fraction of each cycle from an intense

localized potential wave channel. If the orbits of HOT / " -

expelled particles close on themselves in a time PLATE B MOVABLE LASER

equal to the wave period, feedback and reinforce- LENS BEAM AND

ment can occur. Such synchronization is possible TO OPTICS

in EICW, where the collective mode frequency A; PMT

is very cl(1.4e to the free-particle (orbital) cyclo- FIG. 1. Schematic of experiment and geometry.
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I- .01 ,n anO ensure hiat the curc:1t chanletl, ain

consequently tht ,OurCCV potential UCiilatlions,

are entirely htalized u ihtn the elec'trude radiusr -2 3 nin.i,
To measure (Ui ,, ) ), we develop an extension

of selective excitation spectroscojpy. A singl- F(v) '
mode dye laser is beamed across the plasma [ t,
column and its wave number k is electronically ./

scanned across the D, resonance line of Bal at e 1

4934 A. The emitted fluorescence intensity F b
is proportional to)f at t,,mk.v/k, where k is the
laser propagation vector. Velocity resolution

is maximized by the narrow laser linewidth (<1
MHz): ions which fluoresce have velocities in a

range less than 10" of the mean (thermal) ion I /"

speed. The fluorescence is detected by a long-

focal-length lens mechanically coupled to the 1O5 cm/sec

la,,,er, so that both can be indexed simultaneously

across the plasna ' Fig. l(a) and Fig. lIb)l. FIG. Evolution of tie ion beam i v,.hcjty .n':
coordinate space. Vertical: .( , ', time avcraUg J

,itersection determines a diagnosed vol ion distribution function, linear sCaIL, and arbitrary

with resolution of order 1 mm'. The time be- units. Horizontal: ion velocity . linear scale indi

havior of f is obtained from a frequency analysis cated. Trace (a), no excitation; (h) - 0, excitation ,

of , ' , t ) with use of a radio receiver and positions (h) r 0; 6 ) r = 9 mm; (d) r- 1, in ::; (Li

phase-sensitive detector. Bandwidth and phase 12 nm, on same azimuth; (ti r 12 nim, opposite

resolution are less than 10- and 5 , respectively, azimuth.

In summary, we obtain the Fourier transform,
Fkt , r, ,), of fi ,, t) with unprecodented detail.

Below are presented examples of the most signif- trace (fP shows T at the same radius a.-, trace

icant new observations: (I) Generation and local- (e), but on the diametrically op,)site sicue 4 tI,

ization of an ion beam, (11) identification of co- channel center (i.e., opposite azimuth), t. rt

herent and incoherent beam density components, the resonance is seen (arrow) to occur with the

(Ill) excitation of secondary density oscillations, opposite speed in velocity space, = -VR. Sys-

and (IV) unfolding of the ion-circulatfon process. tematic measurements of this type reveal that

(I) Figure 2 shows the behavior of the time- EICW excitation creates a localized ion beam,

averaged value of F= (u,, r). In the absence of with azimuthal circulation in the drectio,, !"

E' -W, F is the same at all positions r, as in diamagwetic ion current, surrounding and con-

trace (a). Note that F is symmetric in v, except centri; with the current channel.

for a flattening at high velocities, which is due (11) We now study the time dependence of h in

to hyperfine structure. At finite EICW excita- the region where the ion beam is localized, e.g.,

tions, traces (h)-(f), T becomes strongly altered, r 12 nm. First, using a phase-sensitive de-

depending on position. First, at the center of tector, we resolve F(t, r, t) at discrete phase

the current channel (r -0), trace (b), P remains points 1 (90 ), 2 (0 and 180 ), and 3 (270 ) within

symmetrical but is appreciably broadened. Tnis an individual EICW oscillation period. As seen,

represents heating of the unstable plasma by the the bulk (low-velocity core) of F undergoes little

localized oscillating fields.' Traces (c)-(e) change in comparison with the velocity-space

follow T at successively increasing radii outside regime centered on t',. Within the latter--the

the current channel, all measured along the ion beam---the distribution function is almost en-

same azimuthal angle, at 90 to the laser axis. tireiy iodulated in coherence with the wave-

P remains narrow as at (a), but becomes strong- potential oscillations of the source region at p

ly asymmetrical; a velocity space resonance is 3 mm. The modulated beam density amounts

seen to emerge (arrow). The resonance is cen- to about 25' of the background plasma density.

tered, for these conditions, at the speed V,- 4 Evidently particle transport is occurring on a

x10' cm see-' in velocitv sps4ce, and the posi- na,,isive scale, and over a distance scale one

titn H? - 12 mm in configUrtihin space. Finaily. order of makgnitude larger than the thermal- in
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6mm

(b) r- Omm

1i2 (C)
V 10 5 cm/sec oc0 s i- 0o,' '

FIG. o. Evolution )f the ion beam in time. Vertical:6
S6t , r, I), ion distribution function, linear scale, and I

arbitrary units. Horizontal: ion velocity, , linear 4 a . 8- 2 1 kG
scale Indicated. Position Is 12 mm. (a) Phase U 0 o B2 8kG
lucked with reference from EICW oscillation anti" . 8,4 3 kG
(L) radio signal. (V and (3), radio tuned to -, excitation o"
on and off, respectively; (2), radio detuned (.'), ex- 0 4 8 12

citation on. MEASURED R8 (mm)

FIG. 4. Ion-circulation analysis and test. (a) Model
of ion circulation. (b) Radial scan ofF(VR, .,r); hor-

Larm,,r orbit i-1 mm for these conditions). izontal, radius (on same azimuth); vertical, iatensity,
At larger excitations the plasma also acquires and linear scale. (c) Measured vs calculated ion beam

an appreciable incoherent component, i.e., non- radius, RR.
oscillatory distribution function changes, induced
by the EICW. To identify these, the detector
IPMT) signal is fed to a radio receiver. This ance of an instability driven nonlocally by the
can be tuned to the EICW center frequency x., or coherent ion beam. We note that conventional
to another frequency .,' outside the bandwidth of (Langmuir) probes in the beam region yield
the EICW oscillations. In Fig. 3(b), traces (1) signals which could be misinterpreted as denoting
and (3) show F with (1) and without (3) EICW oscil- the presence of a local destabilizing current.
lations, at the ioi beam position r = 12 mm with (IV) From the preceding, we obtain a physical
the receiver tuned to _. As seen, these exhibit model for the creation of the ion beam j Fig. 4(a)
a net difference in the beam region V, and cor- (i) The potential oscillation within the current
respond to traces (1) and (3) in Fig. 3(a). Trace channel has radial gradients which accelerate ion
(2) represents F(w.', p 12 mm, u), in the pres- bunches during a half-cycle of each oscillation
ence of intense EICW. The sharp resonance at period. (ii) Ions "falling" down this potential

VR has been replaced by a filhing .i of the dis- "hill" leave the channel and enter into ballistic
tribution function tail. These incoherently ac- (free) orbits with a gyromagnetic radius R, de-
celerated ions comprise about 10%t of the back- termined by their exit speed 7R and the magnetic
ground, and we presume they represent diffusion field B according to the Lorentz formula: RG
of ions heated within the source. =(VR'B)(.1lc 'e), where e,'Al is the ion charge

(IIl) At intense excitation levels the modulation mass ratio. Two adjacent orbits are sketched
extends over both positive and negative velocities, in Fig. 4(a), with open circles representing ions
with a minimum at , - 0. It acquires the appear- being expelled. (iii) One-half an EICW period

794
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later, these ions reach the apogee uf thieir orbit Extrap),az'in to magnetosphere., with poten-

(closed circles). As seen, they are now bu;icned tl:l t i 7-- 1 cV at 10' , cruss-fitid radii art,

and nearly collimated in both configuration and 0.1 - I kin. In fusion plasmas' with 10 kV, radii

velocity spaces. (iv) The envelope of the expelled range from 2 Iui at 10 kG to - (machine .':,e) at

ion orbits therefore constitutes an ion-beam cir- critical field-reversed layers (B 0).

culation in the azimuthal-diamagnetic direction, In conclusion, we present a new mode of wave-

with radius R, twice the size of the gyromagnetic particle interactions which generates anomalous

radius R,. particle fluxes and nonloc J field excitations. In

To verify this concept, we measure R, as a mul:iply filamented plasmas, 2 ' the flux driven bY

function of the parameters ( VR, B) which deter- one filament may pass through another filament,

mine R.= Rb. (i) For a given B, the laser wave- be expelled in turn, and cause multistage trans-
length is tuned to excite ions with a selected V,, port over scales independent of conventional pa-
(ii) their fluorescence is fed to a radio receiver rameters.
tuned to w, (iii) the diagnosed volume is scanned It is a pleasure to acknowledge useful discus-

across the radius r of the plasma. Records of sions and suggestions from I. B. Bernstein, S. P,

F(Vx, w, r), Fig. 4(b), exhibit two resonances. Gary, S. W. Fornaca. J. L. Hirshfield, D. E.
The outermost, sharply peaked at R,, represents Murnick, and P. G. Pappas. This work was sup-

the spatial localization of ion orbits determined ported in part by the National Science Foundati,4:.

by the choice of (V,, B). The inner, confined to under Grant No. Phy 80-09809 and in part by the
the wave channel region r _3 mm, represents the Air Force Office of Scientific Research under

return circulation of ion orbits with the same R. Grant No. 80-0022.
but centered on the opposite azimuth. Radii R,

obtained by this method are plotted in Fig. 4(c).
The straight line is the theoretical value R.= 2RG; H. Okuda, C. Z. Cheng, and W. W. Lee, Phys. Rev.
no fitted parameters are involved. A possible Lett. 46, 427 (1981); A. Fukuyama ct at., Phys. Rev.
intercept at 2 mm may be due to the finite radius Lett. 38, 701 (1977); R. A. Stern, D. L. Correll,
of the source (-3 mm), not considered in our H. Bohmer, and N. Rynn, Phys. Rev. Lett. 37, 833
simple model. (1976).

Our observations and model describe a station- 
2 M. Temerin, M. Woldorff, and F. S. Mozer, Phys.

ary saturated state where source-potential oscil- Rev. Lett. 43, 1941 (1979); F. S. Mozer i al., Phy.
Rev. Lett. 38, 292 (1977).

lations are strongly coupled to beam ions, which tokonas, for example: TFR Group, Phys. Rev.

comprise roughly 50% of the source density, Let. 41, 113 (1978); J. P. M. Schmirt and T. Lehner,

"load" the potential, and maintain a balance be- Phys. Rev. Lett. 45, 1185 (1980). In mirrors, for ex-

tween mean beam energy and potential excur- ample: W. C. Turner et al., Phys. Rev. Lett. 39, 1087

sions. Probe-measured potential peaks of 1 V (1977); F. H. Coensgen et aI., Phys. Re' L-tt. 3-5,

max are consistent with peak beam speeds of 10' 1051 (1975).
cm/sec and magnetic field-determined radii, 4J. M. Dawson et al.. Phys. Rev. Lett. 37, 1547
Fig.4.sence b mgeions reetineannery i (1976); E. S. Weibel, Phys. Rev. Lett. I1, 377 (1980).
Fig. 4. Hence beam ions retain mean energy on SN. Rynn, Rev. Sei. Instrum. 35, 40 (1964).

successive orbits, while ions scattered out of 6R. A. Stern, Phys. Fluids 21, 1287 (1978); R. A.

phase constitute the "incoherent" broad back- Stern and J. A. Johnson, III, Phys. Rev. Lett. 36, 1047

ground (above). (1976).
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Abstract

Modulational interaction of nonlinear waves is modeled

using three-, five-, seven-, nine-, and sixty-four-wave

truncations of the nonlinear Schr6dinger equation. A de-

tailed description of the phase-space for the three-wave

systems is given, showing the various modes of evolution. It

is shown that under certain circumstances the saturation

level of the side-bands is computable from the linear dispersion

relation for the instability. The quantitative accuracy of the

three-wave system as regards the recurrence-time and the dis-

tribution of energy over the modes is verified by comparison

with the other truncations.
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I. INTRODUCTION

The collective interaction of many diverse phenomena in

fluids is described by the nonlinear Schrodinger equation; for

2xample, the modulational instability and propagation of

Lanqmuir waves in a warm, collisionless plasma, 1 or the modulational

interaction of progressive waves of finite amplitude on deep-

water (Stokes waves).2,3 To be specific, we take the Schrddinqer

equation to have the form

itE + + E2- I E =0, '  (

where E is proportional to the complex envelope of the electric

field for Langmuir waves and ... denotes a spatial average.

Since Ej 2 is a constant [see Eq. (3)1, by a suitable change

of variables, Eq. (1) can bc transformed into the form (jiwon in

Ref. 2, with E representinq the free-surface elevation of Stokes

waves on deep water. [All the variables in Eq. (1) are in

dimensionless form.]

Noting that a spatially and temporally uniform field E
0

satisfies this equation, the stobilitv of this solution is

determined by examining perturbations of the form E exp( t+ikx),

leading to the well-known dispersion relation for modulational

instability

k(~0 2 - 2)1/2 (2a o k 21E F (2

as plotted in Fin. 1.



In an interesting set of water-tank experiments on Stokes

3,4
waves, 3 it was discovered that following the modulationally

unstable stage, the waves showed a remarkable behavior

in that after the saturation of the instability, the original

form of the wave-packet was reconstituted over and over again.

The small deterioration in the process of reconstituting the

original form of the packet along the length of the water tank

was attributed to effects such as the viscous dissipation of

surfacu waves.

To understand the essential physical mechanism underlying

this process of recurrent temporal behavior, we show in this

paper that it is imperative to note that the boson number B, qiven

by

B fIEi d.

is a constant motion of Eq. (1). In k space one has

B= Ek2 0 2 + j I.k2

k k1>0

We thus find that as the perturbation grows, !E 0 must decrease.

Provided Ikl is not too small (compared to '':E ), we show that

the instability is quenched when the pump mode has been depleted

to such an extent that the radicand in Eq. (2) becomes neqative.

'rhc subsequent development of the system involves a periodic

interchanqe of energy amonqst the modes. (See also Fig. 3, Pef. 2.)

For small values of k , this picture fails since such perturhit icir:;



cause considerable depletion of the pump and the linear analysis

upon which Eq. (2) rests breaks down. Notwithstanding, for these

perturbations, too, the system evolves oeriodicallv.

A detailed picture of the phase flow is constructed for the

three-mode system, classifying the fixed points and determinina

the periods of oscillation (when applicable) about them. This

analysis is not limited to small amplitude perturbations unlike

the case in a recent study 5 where, in addition, the pump ampli-

tude was not allowed to vary.

The results of the three-mode system are then compared with

those of five-, seven-, nine-, and sixty-four-mode systems. We

find that the recurrence-time is almost exactly the same in all

cases. Further, the distribution of enerqy over the modes for

the three-mode and the sixty-four-mode systems are in fair accord

and as more and more modes are added to the three-wave sys-

tems there is a rapid approach to the results of the sixty-four-

wave truncation.

II. THREE-WAVE TRUNCATION OF SCHROEDINGER EQUATION

2
Our aim is to examine only the case of "simple" recurrence.

Thus, we neglect the harmonics of the perturbation. In particular,

we choose

E 0 exp(i: ) + E exp(ikx+i ,) + E exp(-ikx+i;)

(k-0; Eo , E, ., are real)

subsitute into Eq. (1), and separate real and imaginary terms

to obtain (using a super dot to denote the time derivative)



EE 0
2  (4)

2= 2E sin (5)

-2E 2 (-+cos'-) 4E 2 cose - 2E 2 
- 2k 2  (6)

where

2, - 2: (7)
0

Note that in the expression for E, we have chosen the amplitude

for the perturbation at k to be equal to that for -k. This is

done because if these amplitudes are the same initially, as in

2
the computations, one can show their equality for all time.

Eq. (3) then becomes

B = E 2 + 2E 2 = constant (8)o

Using B, we need only consider, in lieu of Eqs. (4)-(6),

= -(B-E 2 sino , (9)Po - (B-

S2Eo 2 (l+co s " ) - 2(B-E2 )cos, - (B-E ) -2k2 (10)

There exists another constant of motion

2 2 2 2 2 1 2
H k (B- ) - ((B--E + 212 )] (11)

0 o (12cos0

which is the lamiltonijin of the system.



111. PHASE-FLOW OF TIE TRUNCATID EQUATiONS

As usual, we regard Eqs. (9) and (10) as determining a

vector field in the two-dimensional phase-space (E , ); i.e.,

defining a unique direction along which the system evolves.

However, there are exceptions to this: at the fixed points of

the flow, where the right-hand-sides vanish, there is no

defined direction. The fixed points are

°  = , arc cos ( -- ) ; (213-(ki)

3B+2 k
2

EO 7 0, +2r ; (12ii)

12 2
E° = B-2k ; (B2k (12iii)

E = 0 , arc cos(i k - (B2k (12iv)0 B 2

Since physically the phase difference of U and E k is restricted

to -i .- b <. , the condition on C is -2- C 27 , where

is defined by Eq. (7). Using the fact that E 0 2[see Eq. (8)j,

we see that the phase-space of Eqs. (9) and (10) is a cylinder of

length '' and radius 2, obtained by identifying the lines = 2"

and =-2T

We now determine the nature of the phase flows close to the

fixed points by studying their stability; i.e., linearize Eqs. (9)

and (10) about each of the fixed points in turn and substitute

in perturbations of the form 'E°  exp(At). The followinq

characteristic exponents a,-o then obtained:
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0 2B sin'
2B sin, ";

E 0o[(4k /B)-l(

A -2B sin, E 00

i4(3B+2k2) 2B-k 2 ) 1/2 E
o _7 (13ii)

14Eo

+i2k(B-2k2 ) I /2 - - (]3iii)

2E
0

-B sin , = 0

A 2B sin) , E = 0 ; (13iv)0

corresponding to the fixed points given in Eqs. (12i)-(12iv),

respectively. In these equations, we have also given the eigen-

vectors. The exponents given by Eqs. (13i) and (13iv) show that

the fixed points given by Eqs. (12i) and (12iv) are saddle points,

1-
with a one-dimensional stable manifold RI -. (corresponding to

1+
0), a one-dimensional unstable manifold RI. iv (correspondinq1,V

to 0), and with the phase curves having a hyperbolic structui,.,

as shown in Fiqure 2. The exponents given by Eqs. (13ii) and

(13iii) show that the fixed points given by Eqs. (12ii) and (12iii)

are centers with elliptical phase curves, as shown in Figure 2.

Note that the sense of rotation of the phase curves around these

fixed points are opposite to each other, as is easily checked

from the linearized forms of Eqs. (9) and (10).
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IV. EXAMPLES OF RECURRENT FLOW

Let us first consider the results of Rtf. 2. r n those

computations, the initial fields are real-valued and the

perturbation is of an amplitude much smaller than that of the

(uniform) pump. Thus we begin at = 0 and near the top of

the phase-space, below the line E = B in Fig. 2. The trajectoryv
0

then moves clockwise parallel to the stable manifold R. for

awhile, sharply bends downwards, moves towards = 0, turns

upwards, and then returns to the vicinity of where it started

1+from, parallel to the unstable manifold . . Fig. 3, obtair.cd
1

by solvinq ELs. (9) and (10) numerically for k = 1.2 and the

initial conditions E 0 I and F = 0.05, shows clearly the structure0

just described. Thus, initially, as seen from Ec. (2) the

system is unstable and the modulation of the uniform field qrows.

From Fig. 3, w'e see that the pump decays to an amplitude of

=0.828, at which point the instability is quenched, since the

radicand in Eq. (2) now equals 2x(0.828) 2 
- 1.22 = -0.069. The

subsequent periodic flow is obvious from the phase curve.

In Fig. 4 we show a phase curve that comes under the influence

of most of the fixed points as it transverses the phase-space. In

this figure, we have indicated the relative positions of the

fixed points, which induce the particular form of this'phase curve.

V. EFFECT OF HIGHER HARMONICS ON 3-MODE SYSTEM

In order to evaluate the ,,'tent to which our results, based

on the solution of Eqs. (9) and (10), faithfully capture the
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essence of the actual ;)robrem, we have solved Eq. (1) usin . ic

seven , nine , and sixty-four modes. For relerence we give the

equations for the five-mode system only:

2
E 1=E 1E sin', + 2E F [ 2fr sin(,e )E2sn2-), (4

2 22E 2 0 ( i,+ 2 sin2j - 2E 1 E 2 [2sin,4 +sin('- Al, (15)

2 2- 2 _ 2 
- F 2  2 2) 22-k2++-.4':.)(Eo- E)cosi+(E-2E 1 )cos-2E2 cos2.

+ 2E (F --I-)cos( -1+2E2cos (21,-! )] , (16)
2 0o2

-4 2+12 2 E 0 2 ' 2
= 4 F -+2H- (- - 2--)cos",-2E cos'+(E-2E )cos2.

0o 21 F 2  E~ 0 2
E 0 L ?

+ E ( - 2--)cos(-) +2E'I-cos (2,-b) , (17)f 2  Eo

where

B5 = E2 + 2i' + 2P2
0 1 '2

is the conserved boson number for the five-mode system, and the

Fourier expansion of the electric field in Eq. (1) has the form

E = E exp(i 0) + E1 [exp(ikx+i:1 ) + exp(-ikx-i?])]

+ E2 [exp(i2kx+i. 2 ) + exp(-i2kx-i%.2)]

and we have re-defined the following linear combinationsof ohas,-

anqles for the five-mode system (cf. Eo. (7)

= 2, - 2 0

' 2 0

II
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As in the case of the three-mode system one can try to

determine the fixed points of Eqs. (14)-(17). As an examnle,

the fixed point corresponding to that jiven in Eq. (12i) is

k 2  1 4k2

0= '  = arc cos(- - 1) , - arc cos( - 1),

E1 = L2  0 2

provided one uses E - 0 in Eqs. (16) and (17).

Unfortunately considerable difficulties are encountered

in determining some of the other fixed points. To illustrate,

we note that , = ,, = 0 are fixed points for Eas. (14) and (15).

Substituting these into Eqs. (16) and (17) one ends up with th.o

following bi-quartic alqebraic equation

2 2 2 2 2_ 2 2 2 2 2-23
12(F,0 E1) (2 3 2 4k2) _ EI)+ 1 +2 1)2)

_E 2 (k2_2E 2+3E )3_12E (k-2_2F2+3E) 2(E_E 2) = 0
o o 1 ( o 1

7
Although there is a formula that expresses the roots of this

equation in terms of combinations of radicals of rational

functions of the coefficients, the result is so messy that

not much can be qained from it.

In order to make further progress as regards the effects

of higher harmonics on the three-mode system, we have numerical lv 1!

solved the five-, seven-, nine-, and sixty-four-mode truncations

of Eq. (1). Tn all cases we find that the system behaves

according to wha. Yuoi. an-' Ferguson 2 termed "simple"-recurrc nce,

with almost identical recurrence times. Table 1 gives the distri-

bution of energy over the modes at half the recurrence time, when



Ii

the energy 'ontent o: the sc-tellites with respect tc th. num

mode Is maxim;il. Tho tabl kt , c]oearl, shows t ho r mid aci n ,, Ich

used in th. computations increases. This behavior is shown

more graphically in Fig. 5, where we have plotted R( /2)
2r9 9

k 12) (to) as a function of number of r s

letained in the computations; here denotes the recurrenc,

time in the system. Fig. 6(a) shows R(t) as a function o,

time for the system with 64 modes and Fig. 6 (b) shows the k

sp)ectrum of Langmuir waves obtained from Eq. (1) at the tin-

when the maximum value of R is attained. At this time thcre

are a number of very intense solitary waves in x snace [see

Fig. 3 in Ref. I and Fig. I (a) in Ref. 27. Fig. 6(b) is show.:

here in order to give an indication of the extent to which out

three-model truncation of the Schroedinger equation is a ,.

description of the process. The solitary waves formed in x

space, although very intense, are smooth structures. To form

these, one needs the high mode-number parts of the spectrum,

with appropriate phcises, in addition to the low wave numbo:.-

components. In Fig. 6(b), we see that at their peak the

amplitudes of the former group are at least a factor of four

smaller than those of the latter group.

It is important to note the following. The finite separation

of the modes that inevitaoly arises in any numerical experiment

and shown graphically in Fig. 6(b) might lead some to suspect



that by incl, ,itnq :or t.: or& 2'o)(. os, is in a real experiment

the .,henomencn of recurrence would Qive place to irregular mo-

tion. We have two comments against this presumption. First,

the very nonlinear coupling that transfers energy in between

the modes strongly couples nearby modes to each other, thus

causing some degree of ever-present cohorence among them.

Second, the phenomenon of recurrence has already been observed

in actual water-tank experiments of Stokes waves on deep water.

VI. CONCLUSION

We have presented here a detailed description of the ohase

space of the nonlinear Schr6edinger equation, describing the no-

dulational interaction of three waves. It is shown that one can

determine the nonlinear saturation level of the modes from th<:

linear dispersion relation of the system providcd the wavenumber

of the pump is not too small. We have also shown that the three-

mode model is fairly accurate, by comparing its predictions for

the recurrence time and the distribution of energy over the modes

with those of five-, seven-, nine-, and sixty-four-mode truncations.

After the completion of this work we were made aware of

8
similar work on the three-wave systems by Rabinovich and Fabrikant

9
and the integration of the three-mode equations by Infeld
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!7'[G[PV CAPTIONS

Fig. 1. Growth rate of modulation E exp('t+ikx) on uniform

pump field E0 , as a function of wavenumber k. Dashed line shows

effect of pump depletion: an initially unstable mode k causes

instability to be quenched by extracting energy from the numr.

Fig. 2. Phase-space for k2  B/2. Note that this is a cylinder,

obtained by identifying lines 0 = -2: and 2-'; tan,

2Bsin-,/[E (4k 2/B -)1. Dot-dash curve shows relative oosition

of phase-curve of Fig. 3.

Fig. 3. Phase-curve for initial conditions E = 1, E = 0.5, and0

k = 1.2. Location of hyperbolic fixed points is shown.

Fig. 4. Example of phase-curve traversing phase-space. Initially,

E 0 .531, E - .86, k = .6, and = .987 Location of fixed0

points is indicated.

Fig. 5. EkT /2) 2 2

r 5kR(1 /2  E (t=o) as a function of

number of modes used in computations; i r denotes the recurrence

time.

Pig. 6. (a) P ,Ek(t) 2 /E (t=O) 2 as function of time,
k# k

using 64 modes. (b) Spectrum of Langmuir waves in k space at

instant when R is maximum.



16

TABIE CAPTION 1

Table 1. Distribution of energy amongst the modes for various

levels of truncation of the nonlinear Schr6dinqer equation at

half the recurrence time. Mode number n corresponds to the

term E exp(inkx) in a Fourier representation of the electric
n

field; n :o being the pump mode.
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TABLE I

MODE NUMR 0 4 8 12 16

N COMPUTATION AMPLITUDE AT HALF THE RECURRENCE TIME

3!
3 16.96 10.57

5 14.20 11.82 3.244

7 13.39 12.06 3.821 1.109

9 13.19 12.08 4.030 1.376 0.4324

64 13.14 12.07 4.095 1.391 0.4727
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Modulational Interaction of Lanqmuir Waves

in One Dimension

B. Hafizi*

Department of Astro-Geophysics
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Abstract

The modulational interaction of Langmuir waves in the

absence of forcing and of dissipation is studied by pertur-

bation theory and by numerically solving 4-mode and 128-mode

truncations of the Zakharov equations. In the 128-mode sys-

tem, following the usual weak-turbulence process of inverse

cascade a Langmuir condensate forms whose self-modulations

lead to the formation of intense Langmuir wave packets which

propagate with fluctuating amplitudes and velocities. The

behavior of the 4-mode system follows that of the 128-mode

system for a brief time interval before the formation of the

condensate in the latter. In both cases several diagnostics,

such as the two-time autocorrelation function, indicate a

partially stochastic late-time behavior. It is shown that

this behavior is consistent with the rigorous perturbation

theorem of Kolmogoroff, Arnol'd and Moser, and that the non-

integrability of Zakharov's equations is due to the presence

of everywhere overlapping resonances.

*Permanent address: Science Applications, Inc., Boulder, Colorado

80302.
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I. introduction

The efficacy with which a powerful laser or relativistic

electron beam may be used to heat a plasma is intimately con-

nected with the problem of Langmuir turbulence. The under-

standing of the latter was greatly advanced by Zakharov who

derived a self-consistent pair of equations describing the

interaction of Langmuir and sound waves. These fluid-like

equations provide a succinct description of many phenomena,

including the modulational interaction and incipient collapse

of plasma waves.
1' 2' 3' 4

5
Recent progress in the study of plasma turbulence based

on the direct interaction approximation uses externally-generated

sources of noise, and damping in the Zahkarov equations. The

application of the dynamical renormalization qrouo is

also based on an open system.
6

In view of the tremendous excitement that has been generated

by the studies of intrinsic stochasticity exhibited by a number

of nonlinear evolution equations 7 ,8 ,9 it would appear worthwhile

to examine the Zakharov equations in a similar vein. In parti-

cular, there is already some evidence that the Zakharov equations

are not solvable by the method of the inverse scattering problem

and that they do not possess any symmetries (and therefore con-

stants of motion) dparL frcm those associated with the invariance

group of their Lagrangian density [namely the Hamiltonian, the

momentum, and the boson (or plasmon) number]. The evidence alluded
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to in the foregoing - and this is only circumstantial evidence -

comes about in computational studies1 0 in which, rather than the

more well-known elastic collisions of the solitons described by,

say, the Korteweg-deVries equation , the solitons of the

Zakharov equations under certain circumstances fuse on collision.

It is well-known that the nonlinear Schr6dinger equation

(which is a limiting form of the Zakharov equations) is solvable

by the method of the inverse-scattering problem and that it
12

possesses an infinite set of constants of motion. Thus a trajec-

tory of this equation, lying at the intersection of the level-

surfaces of all these motion-invariants, is severly constrained

in its topology and its disposition relative to nearby trajectories.

One thus finds that waves of finite amplitude on deep water (i.e.,

Stokes waves) described by this equation show such remarkable

properties as recurrence and phase-coherence over long distances.
1 3

Then, if it is true that the Zakharov equations have only a few

integrals of motion one might expect non-recurrent behavior.

In the present work we describe some initial-value solutions

of the Zakharov equations in one spatial dimension. Starting from

a single monochromatic wave and small-amplitude noise in the other

modes we find that a Langmuir condensate forms through the process

of inverse-cascade14 (or parametric instability). The self-

modulational14 ,15 interaction of the condensate then develops intense

Langmuir waves that propagate in x space with fluctuating velocity

and amplitude. Based on these and other information, such as the

behavior of the autocorrelation functions for the various modes,
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it is concluded that the Zakharov ,(juctt ions cai, ShoW iltrin slst

stochasticity. The theoretical foundation for this behavior

is provided by the rigorous perturbation theory of Kolmoqoroff,

Arnol'd and Moser. 7,8 It turns out that the Hamiltonian of the

Zakharov equations is degenerate and the the tori of the zero-

order Hamiltonian are destroyed under the influence of arbitrarily

small perturbations. Further, the presence of everywhere over-

lappinq resonances accounts for the noninteqrability of these

equations.

II. Parametric instability and 4-wave interaction

There are basically two processes involved in reaching the

late-time behavior of the solutions of the Zakharov equations:

First, there is the parametric instability of a (large-amplitude)
14

wave leading to the formation of a Langmuir condensate in k space

and second, the self-modulational interaction14'15 of the conden-

sate, which results in the appearance of flutuating, intense

Langmuir waves in x space.

As noted in the Introduction both of these processes find

a self-consistent description in the form of Zakharov's equations:

[i'i'{+(3T/2m(,p) 3 ]El(x,) = (2ne2 /mw )NE,

t s x x

where E(x,t) is the low-frequency envelope of the Langmuir field:

E Lang(x,t) =(l/ZE(x,t)exp(-i pt)+c.c.; N(,t) is the perturbation

in the background ion density, N0 ; (4i N e2/m)1/2 is the plasma

frequency, m(M) being the electron (ion) mass and e the electronic

charge; C,, : [( eP +viTi)/M] /2 is the sound speed, T (T being

the temperature an( ! ) the adiabati.ity index of electrons (ions)



Defining dimensionless variables through

2__m W P

3 M p
2(nm) /2 X

X M r D

N 3M N
4mj No
1 M 1/2 3 2  )1/2

rl m 16 T N O e

the equations become

(i +2 )E = NE , (1)

(t- x)N = ; (2)

here rD D (Te/4TNe2)1/2 is the Debye radius and

E _ (YeTe+YiTi)/Te

In Eq. (2) the term i 2 IE12 is (proportional to) the pressure
x

force of the Langmuir oscillations on the sound waves. The com-

pletely integrable nonlinear Schr6dinger equation is obtained

when 82oe, (rD--)2 << M. On the other hand, the validity of
8TNTe' Dx M

the Zakharov equations is guaranteed provided

j2 1 (3)
8lTNoTe

and

krD << 1 (4)
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in the last inequality k represents the dominant wavenumber in the

spectrum. In jenera1 , I ho, w¢Ivenum 'i i-; ,l i v n hy 2'/I., wholl

i s a n i n te oi r ! V0111 fl n o t h o o 1 '11!! ! I 1 l 1, t h , 'i , 1 d

length.

We now derive a set of evolution equations for 4 wave processes, orc?

of %,ose diagrams is shown in Fiq. 1, where tw pDimp waves of anplitude E o and

wavenumber ko interact via an intermediate sound wave of amplitude

N and wavenumber k, producimraStokes (down-shifted) and an anti-
k

Stokes (up-shifted) Lanqmuir wave of amplitude E, and E2 and wave-
number k 0 +k and k -k, respectively (k<O); i.e.,

E(x,t) = E Eexp(-ikoX)+E exp[-i(k+k)x]+E exp[-i(kok)x] l

N = [Nkexp(-ikx)+N~exp(ikx) ]e,

1[Vkexp(--ikx)+Vexp(ikx)]

where V, the "hydrodynamic" velocity, satisfies

t N + V = 0x

Substitution of these expressions into Eqs. (1) and (2) yields

+ (e sint+e sinO) 0 (5)

- L sine = 0 (6)

neo0

- L sin = 0 (7)

iA-kv sinp= 0 , (8)
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e
v + k{nsino + -[2 sin('+p)-e sin(0-¢)J} = 0 (9)

L 2 1e e e

e - k(k+2k +-cos) + L fo cosp +( 0 Cosa 0 , (10)
_ k v-n 2  e

k -{ 2 cos) - -e 2 cos(P+) + ecos(6-)]} = 0 , (11)

e e2
q + n[ -S + cos+( - )cos] = 0 ,(12)0 nkc L eo0e 0  e 2

wherein a super dot denotes a time derivative, and

E0 eoexp(i))

El elexp(i))
E e exp(i)

E 2 e2 e x ~ 2

Nk = n exp(io n )

Vk = v exp(i V )

8 - o-¢ 1+on

0 0- 2- n

with eo, e , e , n, v, ,¢o' 4I) ,2' n and 4v being real-valued

functions of time.

Examining Eqs. (5)-(12) one can extract the following

constants of the motion
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b e 2 + e' + e'
0 1 2

p = k e2+(k +k)e2+(k -k)e2 -2nv cosp00 0 1 0 2

2 neo
h =ke 2 (k +k) 2e 2 +(k k 2e2o+ns2+V22 (e cosO+e cOs)

0 0 0 1 0 2 L 1 2

(13)

representing the boson number, the momentum and the Hamiltonian,

respectively.

The corresponding invariants of the untruncated Zakharov
10,16

equations are proportional to

B = J dxlE(xt) 1 2

P = f dx(Ex E-E,xE)+ dxNV

H = f dx[ x E I"+N!E1K+(1!2)(N 2 +V2 )]

in the integral representation.

14As is well-known, a monochromatic pump-mode of wavenumber

korD > -iim7-M is unstable to the inverse-cascade process wherebyoD 3
it decays successively into daughter waves until a Langmuir con-

densate is formed in the region o < IkrD < /m-7M. With the

formation of the condensate there arises the question of the

means by which to dissipate this energy in a region of phase-

space where the usual process of Landau damping, radiation, etc.

are ineffective. [By dissipation we mean the transformation of

the electrostatic energy residing in the condensate to other forms,

via processes lying outside the scope of EGs. (1) and (2).]
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The way out of this difficulty was first pointed out by

Vedenovand Rudakov1 5 who showed that the Langmuir conden-
E2

sate is unstable to spatial modulations when >T (AkrD)2
,

8TN T ^U
oewhere Ak is the average spread in the wavenumbers of the

condensate. It was later shown that the self-modulation

can lead to the formation of intense solitary waves, thus

transferring energy into the dissipative region.

III. Computations

17The computations were performed by the Galerkin method

of using a finite number (128) of Fourier modes spanning the

solution space. The integration of Eqs. (i) and (2) was carried

out by splitting the evolution operator into its linear and

nonlinear parts. The linear part of the integration was carried

out exactly in k space and the nonlinear part by implicit methods

in x space. Aliasing errors were avoided by the usual method.
18

The errors sustained in B, P, and H were less than 1%.

Landau damping is neglected since krD << 1 and Te >>DTie

further, following the definition given after Eq. (2), n 'e = 1

since the electrons are isothermal on the ion-sound time-scale.
- 3 M rD

The periodicity length used in these computations is L - 64x-(O)r

The initial-value problem was set-up with korD = 2.4 x

1,rm-M(E E0 = 45.2), (k +k)r = -0.6 x .V._$/M(Ek EE 0.021)
k 0 D 3 k+

and all the other modes at round-off amplitudes (Zl0-1 5 ). The

Stokes mode chosen (k0 +k) is the one with the fastest parametric

growth rate, obtained by solving the usual dispersion relation
1 9

for parametric instabilities for constant Ek E

'k-4kk (o+(4k-k2 -1)k2 ,,2+4k3k w-(4k -k +2!E 2 /L 2 )k = 0
0 0 0 0 0

(14)



10

with the imaginary part of w determining the growth-rate.

Fig. 2 shews the spectrum of Langmuir waves at pt = 192{M/m).

In this figure we see the pump-mode and a strongly driven Stokes

mode. Since the magnitude of the wave number of the latter,

0.6 x . hm-M, is less than -m-/M it cannot decay. As usual, one3. 3

can also see a prominant anti-Stokes (up-shifted) mode. The

standard normal-mode analysis 1 9 determines the ratio of thl

Stokes mode E, to the anti-Stokes E2 to be

E , :' 0- t*- (ko-k) 2

IE1  10 1 -(k 0+k) 2'

where w is the freauency of the pump-mode. Note that this ratio

is independent of the pump-amplitude, Eo. The ratio of the ampli-

tudes determined from Fig. 2 is within a factor of three of that

given by this exoression. Of course, this agreement is very rough

because the above formula is obtained from a normal-mode analys±s

with a fixed pump amplitude, whereas the computations refer to a

system (and in particular a pump-mode) that changes considerably.

Although the Stokes component cannot decay into another

Langmuir wave with the emission of a sound wave, it is still

unstable with respect to the 4-wave instability shown in Fig. 1.

We have checked that, making a rough estimate for the amplitude

of the Stokes mode (as the pump-mode), the unstable modes pre-

dicted by Eq. (14) correspond to the sub-satellites of the Stokes

mode, designated ss in Fig. 2. The sub-satellites on the right-

s~de of the pump-mode and the right-side of the anti-Stokes mode

could possibly be generated by parametric interaction with the

sub-satellite on the right-side of the Stokes mode. Thus, the
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20
wavenumber and frequency selection rules for the 3-wave process

(neglecting the anti-Stokes mode) Langmuir-Langmuir+Sound are

respectively

k= (k0 +k) - k (15)

k2 2

k0 = (k0+k) -Ikl (16)

in dimensionless units.

One can now excite a sub-satellite of the pump-mode, with

only a small mis-match for the frequency selection rule using

the existing sound wave:

[(k0 +k)+6k]-k - k0 +6k (17)

[(k +k)+6k]2-Iki , (k +6k) 2  (18)

If Eq. (15) is satisfied then so is Eq. (17); if Eq. (16) is

also satisfied, then Eq. (18) has a frequency mis-match o(6k).

In Eqs. (17) and (18) (k +k)+6k is the wavenumber of the sub-

satellite on the Stokes mode and ko+6k that for the sub-satellite

on the pump-mode.

One can also generate sub-satellites to the sound waves

(as observed in the computations) by beating a sub-satellite

of the Stokes mode with the pump-mode:

k O - (k 0 +k)+k] -- (k+6k)

k2 - [(k +k)+ k] 2 -k+6k!
0 0

in obvious notation.
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As reqards to the sub-sub-satellites and the sub-sub-sub-

satellites we believe that they are excited throuqh the modula-

tional (4-wave) instability of the Stokes mode, and harmonic

generation

This is sugqested by

the disposition of the sub-sub-satellites and the sub-sub-sub-

satellites with respect to the Stokes mode and its sub-satellite-s

in k space.

Fig. 3(a) shows the k spectrum of the Langmuir waves at

P t = 624(M/m). The Langmuir condensate has already beenP

formed and its self-modulational interaction1 has led to the

development of an intense solitary wave as shown in Fig. 3(b).

Fig. 4 shows a plot of R(t) ! Ek(t)i 2 /IEk (t=0)12 as
k#k o

a function of time. After a period o? recurrent energy exchange

- principally between the pump and the Stokes mode - an apparently

time - asymptotic state is reached, with fluctuations of about

5% on the mean value of R. In this late-time stage the pump

mode is almost completely depleted and most of the plasmon

energy resides around the origin of k space.

At this juncture it must be pointed out that a picture

similar to that in Fig. 3 is obtained if one starts with a

broad-band pump, since in both cases the Stokes wave and its

sub-satellites form a broad spectrum around k = 0. 21
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IV. Theory and Discussion

We now proceed to examine Fig. 4 in more detail in order

to qain an understandino of its two main features, namely the

initial periodic behavior and the final random oscillations

suoerimposed on a mean level.

Examination of the ]t spectra of the Lan rmuir oscillations

reveals that in the initial stages most of the energy resides

in the pump and the decaN, mode, which exchannes enerqy in a

neriodic manner. Ens. (5)-(12) for the four-wave system have

been solved for the same set of initial conditions as that for

the many-mode computations. Fig. 5 shows the amplitude of the

oumr mode as a function of time, which can easily be compared

with Fig. 4. From Fig. 5, the pump is depleted to a value - 12.6,

at which time R = 45222.62 = 0.92, compared to 0.725, 0.9, anc1

0.73 for the first three maxima of R in Fig. 4, for the 128-mode
M -

system. The oscillation period for the pump in Pig. 5 is 37 -k
mDM -

and that for the initial oscillations in Fiq. 4 is 44 -wmp

We note that the oscillatory part can also be accurately described
20

by a 3-wave system in which the anti-Stokes mode e2 is neqlected

in Eqs. (5)-(12); this being due to the fact that this mode has

relatively small amolitude.

We now proceed to examine the late-time behavior of our

solutions. After the formation of the Lanamuir condensate

and its self-modulation, there appear intense Langmuir waves

in x space which propagate with fluctuating amplitude and velo-

city. It is well-known that the decay instability is subsonic

provided
1 4
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E
o

8-NT
oe

wherein E is the peak value of the electric field in x space.
0 EI

For the parameters of our problem we find T m at t = 0.
8, N T 3 M tt=0oe

Further, due to the decay process and the associated emission of

sound, weak turbulence is accompanied by sound turbulence. Under

these circumstances one observes break-up and fusion of Langmuir Wave

Dackts.10 Fig. 6 shows the space-time path of the fluctuating wave

packets. One can see that as it progresses its speed on occa-

sions approaches that of sound and then abruptly slows down. Its

terminal speed is close to 0.4CS with small fluctuations about

this value and little emitted sound energy. However, the ampli-

tude of the wave-packet varies within a factor of 3 in this time

M '1interval, 630 - < ; t < 720 L. It must be noted that atm -- p - m

about t = 636 for example, one observes the wave packetm

to slow-down considerably and to break-up into two wave-packets

one of which then intensifies and moves away from the other. (in

3:-nple of break-u. ic civen later, Fia. 10). The displacement

,o:.ted in Fig. 6 is that of the dominant wave packet observed.

(in the snap-shots obtained in our computations there has always

been one dominant waveoacket even when two wavepackets have colideXd

or one has broken uo.) The larqest value of N in this
o em

iroblem is 4 E in the course of computation. Fig. 7 sho's the sound

momontum [=NVdx, as given in the expression for P, following

Eq. (13)], indicating a fluctuating interaction with the Lanqmuir

oscillations in the late stages.
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Let f(t) be one of the variables characterizing the system.

The two-time autocorrelation function for this variable is qiven

by

1 r

C --- I dt[f*(t+ ) - <f* ] [f(t) - <f>] , (19)
j
0

where <...' denotes the time average. We have computed the (real-

part of the) two-time autocorrelation function for the Langmuir

modes zero through fifteen, two of which are shown in Fig. 8.

The integral in Eq. (19) was performed for the time interval

630 < ) t 720 The decay of the autocorrelation functionM p -
~ 99

to zero as -- is regarded a: a signature of stochastic flow. --%

Bearing in mind the limited time-length of our cQmoutations, FiQ,

8 indicates that our particular problem is partially stochastift

'2he definition of autocorrelation function qiven in Eq. (19) is

that usually used in real experiments as opposed to idealized

mathematical systems where the time-averaqinq is performed over

an infinite time interval. The finite number of sample points

implies that relatively ].arge errors are incurred in evaluating

the autocorrelation function, which error increases as ; increases

due to the reduced number of sampling points. Por the eigth mod(.,

Fig. 8(a), the error at ( f = 5 is 3%, that at w D = 25 is 20%

and that at t i = 40 is 60%. We have referred to the state of

the 128-mTode system as partia ly stochastic since, qiven the errors in-

volved and the limited time over which the system has evolved,

once cannot conclude that the two-time autocorrelation function

decays to zero. In fact, the very presence of one or more in-

tense Langmuir waves implies that there is a certain cohqrence

anungst the Fburier cinponents that make up the uave packet(s). Particularly
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in the late-time stages of the computations we have observed that

the wave packets propagate for distances corresponding to at

least a few decorrelation-times (i.e., the time duration in which the

correlation function fal by a factor e) while maintaining their

integrety, albeit wdith fluctuating amplitues and velocities. Thus,

although the autocorrelation functions decay to about 1/3 of their

peak value, there is certainly the remanent of organized behavior

in the 128-node system, for the Particular Parameters used here. We refer

to such behavior as partially stochastic. The autocorrelation

functions for the other modes have a similar behavior except that

the numer of oscillations per unit time interval increases as the

mode number increases. We have also analyzed the temporal spectrum

of the Langmuir oscillations (at a fixed point in x space), obtainina

a continuous, broad-band spectrum over a decade and half of

frequency.

The next obvious auestion is how these results are altered

as one increases the initial pump amplitude? For this purpose

we need to rewrite the four-wave Hamiltonian in action-angle

variables so as to be able to use the Kolmogoroff-Arnol'd-Moser

stability theorem2 3 and some of the numerous numerical studies

performed to investigate the stochastic behavior of Hamiltonian

systems. 7'8 '9 The details of the calculations are given in the

Appendix; the four-wave Hamiltonian has the form

h = [k2 J +(k +k)2J1+(k -k)2J 2 ] + IkI (J+J4)
0 0 0 0 03

+ 2(- ) (J3cOs23+J4sina-) [j cosl00-01- n )

(20)
+ J2 cos(00-2+4n)]
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wherein the J's denote the action variables and the 's the

angles, with

E. =(LJ exp(-i), (j = 0, 1, 2)31

Nk = (LIkJ) (J s 3 + sink)

arc tan[(L) (21)
n =J 3  c s 3

Vk = i(Lik) (J13 sinp 3 + iJ4cos )

note the change in the sign of the exponential for the electric

field as compared to that given followinq Eq. (12) (For the trans-

formation to action-angle variables it is natural to use the vari-

able U defined in the Appendix, Eq. (A2). However, for our compu-

tational work for reasons of symmetry we have found it natural to

use the "hydrodynamic" velocity V, defined just before Eq. (5);

they are related via V+ xU=0.)

The basic question is if the Kolmogoroff-Arnol'd-Moser theorem

can guarantee the preservation of the tori of the unperturbed sys-

tem. The basic requirements of this theorem for stability are
7'8'23

i) The nondeqeneracy condition

detilwm # 0 , 0,1,...,4

ii) The condition for isoenergetic nondegeneracy

det m (A z 0 Z,m = 0,1,...,4We m 0
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iii) Absence of low-order resonances, i.e., no relations
4 4
X Ziwi  = 0 with integers 9i such that 0 < 19,i < 4.

i=O i=O
In these formulas u is the frequency corresponding to the

action variable J ; i.e. 02 = 2 - = (k -k)2 , h being the
2 2 0 0

zeroth order Hamiltonian

h = k2J + (k +k) 2J1 + (k -k) 2j + k l (J +J);
0 0 0 0 1 0 234

in addition, w m denotes the derivative of ,) with respect to Jm

Straightforward calculations show that conditions i) and ii)

fail for this Hamiltonian.

Now consider ti-e decay mode correspondinq to the perturbation

term cos(¢o- 1-cn) . By definition, and usinq Eq. (21).

Th

-=k 2

Th00J= (ko+k)2

cos (4 -3)
n = cos 2 3 +(J /J 3 ) sin2 ( k  kj

where in the last step we have specialized to a diagram of the
kind shown in Fig. 1 in which J 3=J and 3= 4.

The decay is resonantly driven when

k 2  + (-1) (k+k) 2  + (-1) IkI = 0 , (22)
0 0

and the coefficients of this relation give

1 + -11 + 1-11 = 3<4

whence condition iii) fails.

The other angle dependent term, cos( o -¢+¢n), leads to another

resonance
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k 2  + (-1) (k -k) 2  + (+1) IkI = 0 (23)
0 0

which again fails to satisfy condition iii).

As is well-known, 7 ,8 ,9 the presence of two or more resonances

is the basic ingredient required for chaotic behavior. A graphic

confirmation of this is shown in Fig. 9, which is discussed in the

sequel. But first we wish to point out some of the pecularities

of the Zakharov system.

In general, the resonance conditions for a Hamiltonian system

depend on the action variables, with the result that the resonance

is satisfied on a certain subspace of the phase space. Given two

or more resonance conditions the proximity of the resonant subspaces

is a crucial factor in determining the threshold for stochasticity,

which will be limited to the region formed by the union of the

resonant subspaces. But, the resonance conditions given by

Eqs. (22) and (23) are independent of J0 , J1 , and J2 . Thus, in

the action space spanned by (J0 J'.oJ 2
'J 3 'J ), these two resonances

overlap on the hypersurface J3=J4 for all Jot J1 ' J2 (provided

these are small enough for the validity of perturbation theory).

We therefore reach the important conclusion that the Zakharov

equations may be stochastic for arbitrarily small values of J0 Jl

and J2 (but not zero). It should perhaps be pointed out that the

extent to which, for example, the temporal behavior of the

electric field wculd appear to be irregular or random, is deter-

mined by the absolute value of the nonlinearity, and the randomness

would grow as the nonlinearity increased.
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It must be remarked that the presence of a sinqle resonance and

the failure of the Kolmogorov-Arnol'd-Moser theorem means that

the tori of the zero-order Hamiltonian are severly distorted,

but the system is still integrable. As soon as two or more

resonances overlap, the global invariants (or constants of

motion) of the system are destroyed, leading to a nonintearable

motion.'8 in otherwords, the speculation that the Zakharov

equations are noninterrable, which arose from numerical studies
10

in which Zakharov solitons were observed to fuse on collision, or

breakup, has its fundamental basis in the presence of (everywhere)

ovcrlaopint rezornnc''. It should also be pointed out that the

Kolmosoroff-Arnol'd-Moser theorem is basically a theorem of sta-

bility; i.e., it guarantees the preservation, under perturbation,

of the tori on which the unperturbed flow takes place when certain

conditions are satisfied. When these conditions are not satisfied,

the destruction of the tori is possible. The numerical results

presented are therefore necessary in order to confirm this possi-

bility, as is the usual practise.
7 8

Now consider the subspace J = J 4 J on which the Hamiltonian

is

ho' = k2J + (k +k)2J + (ko-k)2J + 21k1J
0 00 0 1 0 2

+ 2E( 1j Jcub( 0 - - n + J cos( -+n

co ( ... .. .f

L n 2I - .. .. .
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where an t has been appended to the nonlinear term to indicate

smallness, and the following (time-dependent) canonical trans-

formation

2
F(¢030 "O ' 2 j 2j n j ) = 0 j0(1,-0Wt) + j(¢n-)nt)

k=0

The new angle variables are, by definition
3

_ = 0 - t k = 0, 1, 2

aF
n = On n t

and the new Hamiltonian is

h new = h I + 2 F = 2 ( Lk ! 03 i' - - ) + j c s ( 0 O + a

h0 0 At L Iicosaaos(aos o0a 2 n)]

In consequence of this expedient we find that if h' governs a

stochastic motion, this stochasticity will persist fur c-o+, since

is just a multiplicative factor which only affects the time scale.

Eqs. (5)-(12) 'or the 4-wave system have been derived with

no assumption as regards the value of ko; thus, the resonance

overlap in Eqs. (13) and (20) exists also for interactions involvinq

four waves in the condensate, and therefore the condensate itself

can be stochastic.

Without going into details, we report that as the pump amplitude

is increased, the 4-wave system becomes (more and more) chaotic; that

is, the two-time autocorrelation functions for the variables

decay to zero (approximately) in a very short time T [See Eq.

(19)]. Fig. 9 shows the chaotic temporal behavior of the pump

mode for the four-wave system, starting from a pump amplitude

e° = 88.6, all other parameters being the same as for Fig. 5.

A similar behavior is true of the many-mode system. Starting
EQ02  2 mafe hh

from a state in which after th formation of the8,iN T 3 M'atrteorainfth
coe

I.aiimuir condensate and its self-modulation, there appears a
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very intense Lanqmuir wave and one much less so, both of which

propagate with fluctuating amplitude and velocity. Fig. 10 shows

an example in which a wave at x - 13 breaks-up into two

and two at x - 35 and 38 merqe into one another;

Fig. 10(a) is at t = 1, Fig. 10(b) is at t = 144 -. IP M m
The peak value of 8E 0  equals 70 m in the course of compu-

87NT eq
o e

tation. The two-time autocorrelation functions for the Langmuir

modes, Fig. 11, have a form similar to that shown in Fig. 8,

with the difference that, foi each mode, the decorrelation time

is decreased as compared to the previous one in Fig. 8. The

decorrelation time is defined to be the time seoaration I at
p

which the correlation function falls to a value li/e. Comparing

Figs. 8 and 11 one can descern a seewhat more rapid fall-off in the auto-

correlation functions in the latter. If one imaqines fittinq an

envelope of the form exo(-t/h ) to these curves, with -t being

the decorrelation time, the envelopes would huq the vertical

axis in Fig. 11 more tightly than in Fig. 8, because of the more

rapid fall-off in the former. Futher, the first "recovery" of

the autocorrelation function after its first diD towards zero

is sm;,]lr in Fig. U1. (The errors involved in Fig. 8 and ]1

are about the same.) This indicates (but not prove ) that the

degree of stochasticity increases with the intensity of the ini-

tial Langmuir field. This result and the suggestions that the

many-mode system is chaotic should not be surprising in view of

our foregoing arquments as regards to the presence of overlapping

resonance in the 4-wave system. Thus for the many mode system

one might expect a large number of overlapping resonances whose

simultaneous "pulling" on a phase-space trajectory leads to com-

plicated and stochastic flow, 7 ,8 ,9 specially in view of the in-

dications that the Zakharov equations possess very few constants

of motion.
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For simplicity, let us now consider the following form of

Zakharov's equations

(i3 t+A)E = NE , (24)

(3-A)N = AIE12 , (25)

wherein A = 32 + 32 + L
2 ; similar equations have been used to

x y z

study the stability of solitons [which are special solutions of

the one dimensional Zakharov equations, Eqs. (1) and (2)], to

perturbations.'24'2526 Using the Lagrangain density

[E* tE-E( tE*)]-VE*'VE + 1ltU-E12)2 - (VU) 2

the Fourier expansions

E = k1 Ekexp(-ik'r)
L3k k

N = H Nkexp(ikr)

(N=3tU-IE 12 beinq the momentum conjugate to U) and followinq the

Drocodure outlined in the Appendix, the Hamiltonian for Eqs. (24)

and (25) in action-angle variables is

H : J[k2Jk+IkI(Ik+Kk)] + (2L)i -U k'k+k')

k k,k

x (IkCOS2 k+ksin2 k) ex p [- i ( k ' k +k - k
) (26)
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where in
Ek = (L3Jk) exp(-i k)

2 L3Ik 2L3Kk

Uk = _____ -) sinS k + i( -- -) cosk,

Nk = (2L31kIIk) 2cosk + i(2L31klK ) sin k

k = arc tan( ) sink]

I Cosk Ack

and L3 is the volume.

The linear dependence of the zero-order part of Eq. (26) implies

the violation of the nondegeneracy conditions. Consideration of

decay processes of the type k'-ik+k- ak = 0, (cf. Fig. 1) for exanple, wil

bring in overlapping resonances and the consequent stochastic flows.

It must be mentioned that in all the computations presented

here the maximum wave number (or the number of modes used) have

been chosen in such a way that a negligible fraction of the energy

lies in the large wave number region. Indeed, this is a necessary

condition for the accuracy of the code [as measured by the (semi-)

conservation of the Hamiltorian and of the momentum.]

In closing we note that several computations have been

performed with different periodicity lengths L, usinq the same

(initial) boson number per unit length and the same modes with

no change in the results obtained. Further, we have also per-

formed computations in which modes -32 through +32 (c.f. Fig. 2)

were initially at the ame level (=0.021), the pump mode at Ek =

45.2 and modes 33 through 64 and -33 through -64 at - 10- 15 0

(c.f. Section III). In this case the late-time behavior was

stochastic and similar to the previous cases, except that the

transition to the time-asymptotic (in the context of our compu-

tations) state was faster. This is because there were fewer
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large-amplitude oscillations initially (c.f. Fiq. 4, for w t < 150).

The reason is, of course, that with so many modes in the condensate

region at relatively Jiarge amplitudes and the fact that for a given

pump mode there is band of modes that are parametrically unstable,

the condensate forms much faster.
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V. Conclusions

The results of computations on wave-wave interactions in a

plasma described by the Zakharov equations have been reported.

A number of diagnostics, such as the two-time autocorrelation

function,used in those experiments indicate that the interaction

of plasma waves in the absence of forcing and of dissipation

leads to partially stochastic flow, wherein there remains, in

the parameter range reported here, remanents of organized be-

havior, such as intense, large amplitude Langmuir waves.

It is argued that the fundamental theoretical basis for

such behavior lies in the fact that the Hamiltonian Zakharov

equations are degenerate (in the sense of the rigorous pertur-

bation theory of Kolmogorov, Arnol'd and Moser) with everywhere

overlapping resonances. Herein lies the reason for the non-

integrability of the Zakharo' ,juations, a conclusion which is

independent of the dimensionality of the system. For the para-

meter range of interest to this work the effects of Landau

damping are negligibly small. If the width of the wave-number

spectrum is sufficiently large so that the influence of dissipation

need be included it is possible that with appropriate amounts of

forcing the wandering phase point corresponding to a solution

of Zakharov's equations falls into the basin of an attractor

introduced by the dissipation. In this case it is possible that

the chaotic motion would take place on a strange attractor.
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Appendix

The purpose of this Appendix is to cast the four-wave

Hamiltonian, Eq. (13), in the form required for stability

analysis via the Kolmogoroff-Arnol'd-Moser theorem. To do

this we must determine the action-angle variables for the

Langmuir and for the sound waves.

It can easily be verified that
1 0'1 6

= .[E*tE-(;t E*)E]-13 E*)(3 E) 1 (tU-1E12)2-xU) 2 (Al)

is a Lagrangian density for Zakharov's equations, Eqs. (1) and (2),

where U is related to the density perturbation N (which is the

momentum conjugate to U)

N = ItU - IE12o (A2)

We need to consider a single mode only,

1
E =-1 Ekexp(-ikx)

1
U = L[Ukexo(-ikx) + U~exp(ikx)]

and the bare Lagrangian densities for the Langmuir wave, LL,

and for the sound waves, LS,

L x T i (E*i..-E*E) k2-E12(3

LL -d-L k k' - L k' (A3)

L, = (dx9;§= 'N - k2 (A4)

in obvious notation. The respective Hamiltonians are, following

the usual procedure,

H=k2ir.. 2HL = k (A5)

H (A6)
S - (Nki2 kU kI12)(M
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we first detormino the tct.ion-angle variables for the

Langmuir waves. This is particularly simple since

E = (LJ)V" exp(-i,) (A7)k

with J being the action variable and t the angle variable is the

required transformation. To see this note that the Langmuir

Hamiltonian (A5) in terms of J and ¢ is

H = k2J

L

which is independent of €, justifying the designation of (J,)

as the action-angle variable. We now need to show that the trans-

formation (A7) is canonical27 , i.e.,

dJ - d) = dPk^dEk + c.c. (A8)

iEk*
where - is the symbol of wedge product and k is the

momentum conjugate to the coordinate Ek, as follows from Eq.

(A3). The right-hand-side of this expression is

* * i ,i.
=~dE*,, dE-Lk'dPk dEk+ k k = 2L k k 2L-dE kdEk

= id[J xp(i)] ^d[j exp(-i )]

* exp(ip)

i[ dJ+ iJ'exp(if) d ]

I O[x dJ- ij~exp (-i ) dW
2J

i [-idJ *de -idJ ^d4]
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= dJ ^ d >,

which equals the left-hand-side of Eq. (A8), showinq that Eq. (A)

represents a canonical transformation. (In manuoulating the above

27
wedqe product we hcivc used the usual rules 7 , such as dx^dx = ,

dx-dy = -dydx, for any x and y.)

Next we examirp the sound waves and write the Hamiltonian

(A6) as

1
H - L[Q 2 +k 2P 2 ) + (Q2+k 2P 2)] (A9)
S L 3 34 4

where Uk = P +iP ; and Nk=O +iQ". The Hamiltonian is now

similar to that of two simple harmonic oscillators, whose action-

angle variables are well-known
2 8

p3 ]- " g sinl ' Q3 L3k A0
3 (LJ= )k)cCosq, 3  (A1)

P. LJ, cos" , Q, = (LJIk )sin¢4 (All)

Now,

Nk  Q3 + iQ4 (11k)(J cos ,+iJ~sin,1)

= n(cos ,n+isin~n )

wherein the expression for Nk given followiiq Ea. (12) has been

used in the last step. It follows that
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J 4) s i n 4 ( 1 2
= arc tan[ ] (AI2)

n = (Liki) (J 3 cos 2  
3 +J sin 2 4 (A13)

Using Eqs. (A7), (A9), (AlO), (All), and (A13) we have the four-

wave Hamiltonian, Eq. (13), in action-angle variables:

h = [k 2 J +(k +k)2J1 + (k -k)2J 2 ] + lkj(J +J)
0 0 0 1 0 23

* 2( L (J 3 cos 2 3+J4 sin2 4 Jcs (°

+ J 2 c0s(¢0 -p 2 + H)

(A14)

in obvious notation.
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Figure Captions

Fig. 1. Scattering of two Langmuir waves (k ) into

a Stokes (k +k) and an anti-Stokes (k -k) I l
mode, mediated by a (virtual) sound wave

Fig. 2. Spectrum of Langmuir waves versus mode number

M 27at wpt 192 j. (If k = n is a wavenumber,

the integer n is the mode number.) p: pump

mode; s: Stokes mode; as: anti-Stokes mode;

ss: sub-satellite to Stokes mode; pss: sub-

satellite to pump mode; sss: sub-sub-satellite

to Stokes mode; ssss: sub-sub-sub-satellite to

Stokes mode.

MFig. 3. (a) Spectrum of Langmuir waves at w t = 624 Mpm

(b) Corresponding electric field distribution

in x space, showing an intense packet of

Langmuir oscillation3 (dashed line) trapped

in a local rarefaction in ion density

(full line).

Fig. 4. Plot of R(t) ko Ek(t)1 2 /1Ek (t=0)1 2 as

a function of time. (Values on the abscissa

must be multiplied by the mass ratio M! to
obtain actual p t.) k labels the wavenumber

of the pump-mode.



Pig. 5. Amplitude of pump-mode versus time for the four-

wave systcm. (Values on the abscissa must be

mulipljed by the mass ratio M to obtain actual
m

p

Fig. 6. Displacement versus time for the solitary

wave shown in Fig. 3(b) (Values on the

abscissa must be multiplied by the mass
M~ VS

ratio to obtain actual w t.) s denotesm p Cs

speed of the solitary wave in units of

sound speed C S -

Fig. 7. Momentum in the sound waves as a function

of "time". (The values on the abscissa

M
must be multiolied by the mass ratio -m

to obtain actual i t.)P

Fig. 8. Real part of two-time auto-correlation function

CO) versus time separation w p (values on the

abscissa must be multiplied by the mass ratio

M to obtain actual co T.) (a) Eigth mode;
m P 2
(b) eleventh mode. At t = 0, 1 m

Fin. 9. Amplitude of pump-mode versus time for the

four-wave system, in the chaotic regime.

(Values on the abscissa must be multiplied by
M p

the mass ratio M to obtain actual .)
M p
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Fig. 10. Flectric field (dashed line) and density

perturbation (full line) in x space, showinq

solitary wave break-up.

(a) t = 140 M (b) t = 144 M
p mp m

Fig. 11. Real part of two-time auto-correlation function

C(i.) versus time separation c p (values on the

abscissa must be multiplied by the mass ratio

M to obtain actual (, .)
m p

(a) Eighthmode; (b) eleventh mode.
E

2
At 0, o - 2 m

At t = 0,m
o e
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Ion trajectories in a space charge wave

on a relativistic electron beam

D. A. Russell

Department of Astro-Geophysics, University of Colorado,

Boulder, Colorado 80309

and

E. Ott

Department of Physics and Astronomy,

University of Maryland, College Park, Maryland 20742

Motivated by the possibility of collective acceleration of ions

trapped in an accelerating space charge wave on a strongly

magnetized electron beam, the ion trajectories in such a configura-

tion are studied. The motions perpendicular and parallel to the

beam direction are coupled by a nonlinear term in the ion

Hamiltonian that is proportional to the wave amplitude. Because

of this coupling, the motion deviates markedly from that of a

linear harmonic oscillator in certain resonant regions of phase

space. A sequence of canonical transformations is used to study

the motion in these regions. It is shown that wave amplitudes

that are too small to trap beam electrons are too small to cause

thcse resonances to overlap. In the absence of such overlap, the

motion is not discernably ergodic in any three-dimensional sub-

space of the energy hypersurface because there exists a third
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constant of the motion in addition to the total energy and

anqular momentum. These conclusions are verified using

surface-of-section techniques to study numerically integrated

ion trajectories. It is observed that the third constant of

the motion constrains an ion initially trapped in a potential

well of the wave to remain trapped in that well. Therefore,

within the bounds of the physical model presented here,

ergodic behavior poses no threat to attempts at collective

ion acceleration in space charge waves on an electron beam.

__I
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I. INTRODUCTION

We consider the motion of an ion in a space-charge wave

on a strongly magnetized electron beam. In cylindrical geometry,

the wave has both radial and axial potential variations

which couple the ion motion parallel to the beam to that

perpendicular to the beam. Due to this coupling, there is

not, in general, a constant of the ion motion in addition

to the total energy and angular momentum. The absence of a

third constant of the motion could permit the ion's radial

oscillational energy to be converted into axial translation-

al energy and thus defeat attempts to trap the ion in the

potential wells of the wave. For example, if ions are

loaded with zero velocity from the edge of an electron beam,

then, when they reach the center of the beam, they have

kinetic energy in radial motion approximately equal to the

radial electrostatic well depth. This kinetic energy will

typically exceed the axial well depth since the amplitude

of space charge waves cannot be larger than a critical value

at which wave breaking (overturning) occurs. Thus, if at

some time during the particle's orbit a large enough frac-

tion of the kinetic energy of the particle is converted to

axial kinetic energy, then the particle will no longer be

trapped in the potential well of the space charge wave.

In S II we derive the ion Hamiltonian. A canonical

transformation to action-angle variables is introduced in
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§ I.A which allows us to study the ion motion in a con-

venient toroidal representation. In § III.B we prove the

existence of an approximate third constant of the motion

using perturbation methods. These analytical findings are

supported by studying the numerically integrated ion tra-

jectories using surface-of-section techniques. Summarizing

remarks and conclusions appear in § IV.

I. THE TON HAMITONIAN

Consider a cylindrically symmetric electrostatic wave

perturbation of a cold electron beam of uniform density,

n0 , which fills a conducting cylinder of radius a (cf.

Fig. 1). A strong magnetic field in the z-direction is

assumed to constrain the electrons to move only parallel to

the z-axis. In the beam frame (i.e., a reference Frame at

rest with respect to the beam electrons) we take

Pe (r,z,t) = (o(r) + ql (r)exp[i(k z + Wt)]

v e(r,z,t) = vl(r)exp[i(k 1z + Wt)]

and

n (r,z,t) = n + n (r)exp[i(k z + wt)]e 0 11

where 4e is the electric potential due to the electrons, ve

is the electron velocity in the z-direction, and ne is the

electron number density. I' v1 and n1 are small quantities;.
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To zeroth order, Poisson's equation,

V2  e = 4ren e

implies that

2
p0 (r) = nn0 er

where e is the magnitude of the charge of an electron.

Linearizing the electron continuity equation,

na
--e + -- (n v ) = 0

at az e e

in the small quantities n1 and vi, we find that

iwn I1 + ik nv I = 0 . (1)

The linearized electron equation of motion

av
m -e=e e

e at az

implies that

iWv I = ik 1e I/me  (2)

me is the mass of the electron. Eliminating vI between

(1) and (2) we find that

2
-ek 11 no

1n 2 0i'
e

which, when substituted into Poisson's equation for (r),
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yields

id 2

d 2 (r) +r dr e(r) + k 2  - l)4llr) 0

(3)

2 1/2
where w (4ne /m e/) is the background electron plasma

p e

frequency measured in the beam frame.

Equation (3) is to be solved subject to the condition

that e1 (r) vanish at r = a, so that the electric field,

-17e, has no component tangent to the wall of the conducting

cylinder. Furthermore, cel(r) must be non-singular at

r = 0. We find that

00

1 (r) = - J0 (p nr/a)
n=1

where J0 is the Bessel function of the first kind of order

zero. Pn is the n-th zero of J0, and we demand that

2 -1 2 2

k 2  (p ) Pn KnII2 I- a -22 (4)

(4) is the dispersion relation of the wave with amplitude

Obviously w2 > W if the wave is to propagate (i.e.,

k must be real). For simplicity, we retair only one wave,ii

that having the lowest radial wavenumber, so that

(r )  4 41J0 (plr/a) (5)

Here and henceforth we suppress the subscript 1 on 01, Pip

and ' and assume that " 0.
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In the wave frame [z - z - (w/k )t], the electricII

potential is independent of time:

2
Oe(r,z) = iTn0 er - J 0 (pr/a)cos(Kz/a) (6)

An ion (charge = Ze, mass = mi) in the wave has potential

energy Ze e (r,z). Since 4 e is independent of the angle a,

the angular momentum about the z-axis, L = m r 2(d/dt),

is a constant of the ion motion, 1 and the ion Hamiltonian is

(rz;P r P Z) 1 2 (Pr 2 + Pz 2) + 2 + Zrn0 e 2 r2H~,;rP) 2m i  2m r
1 1

- Ze4J 0 (pr/a)cos(Kz/a) (7)

(Pr Pz) are the canonical momenta conjugate to (r,z).

Since H does not depend explicitly on t'ie time, the total

energy, E, is also a constant of the motion:

H(rz;P r,P = E

Let

W0 2 = Z4T1n 0 e
2 /2m i = Zp 2me/2m i

22
We divide the Hamiltonian (7) by mia w 2 and make the

following suLztiUtiorq:

r - r/a , z - z/a

P - P /(miw 0a) Pz - Pz/(iw a)
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and

t -* wot

Now the ion motion is described by the dimensionless

Hamiltonian,

H(r,z;P P 1 2 +1 P2 + 9.2 +1 2
r z = Pr - z _ 2 -2 r

2r

- J 0 (pr)cos(Kz) (8)

where

2 2 2 4 2
/(miaw 0

C eP a 2 /( p 2 ) , (9)

and (r,z;Pr ,P z;t) are dimensionless dynamical variables.

We take (8) to be the fundamental ion Hamiltonian.

However, we have neglected the magnetic field B = B e , which,O- 0

we have assumed, constrains the electrons to move only paral-

lel to the z-axis. In Appendix A we show that including the

magnetic field in the ion dynamics only adds a constant term

to the ion Hamiltonian (8) (and requires us to redefine the

parameters c and Z 2 Therefore, the motion described by the

Hamiltonian (8) is qualitatively identical to the ion motion

including the effez.cts =f the magnetic field so that our

conclusions, based on an analysis of (8), are easily generalized.

The ion moves along a trajectory in the four-dimensional

(r,z;P r,P z)-phase space described by Hamilton's equations.

zi
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- = P . -p P_
aPr  r z  z

_ _ H.
4 = 3H Z3 

+ r + cpJ l (pr)cos(K z)
r

and

-Pz= 3H = KJ0 (pr)sin(Kz)z az0

(The dot denotes differentiation with respect to t.) Each

trajectory is constrained by the conservation of eiergy to

lie on a three-dimensional subspace of the four-dimensional

phase space. This subspace is described by Eq. (8) and is

called the energy hypersurface. If there were a third con-

stant of the motion, the trajectories would lie on a two-

dimensional surface in phase space.

For definiteness, we take c and Z to be greater than

zero. These two parameters are then bounded above. Z is

bounded by requiring that there be at least one point of

stable equilibrium with r < 1. This must be so if an ion

is to be trapped in a potential well without striking the

walls of the cylinder. For our purposes it is sufficient

to monitor this constraint on t numerically.

c is bounded by requiring that the wave not trap beam

electrons. Trapped electrons would violate the assumptions

made in deriving the expression for the Hamiltonian (8).

Using the dispersion relation (4) we find that
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e
E=

me 2(p2+K2
Y Vp

where Vp is the phase velocity of the wave in the beam frame.

But, to zeroth order, v is the velocity of a beam electronP

in the wave frame. Thus, the requirement that the wave not

trap beam electrons is

p2 2 -1I
(p2  ~ -1 max (10)

The primary conclusion of this paper is that, with the

wave amplitude E so bounded, the kind of ergodic behavior

that would discourage attempts to trap and accelerate the ion

does not occur. This conclusion is also valid when the effects

of the magnetic field on the ion motion are considered (cf.

Appendix A).

III. ION TRAJECTORIES

A. E = 0: Conserved Action Variables

It is convenient to study the ion motion in a coordinate

system different from the cylindrical system of §IT. To

introduce this new coordinate system we first consider the

case C = 0. In this case, there is no wave on the beam,

and the ion motion is aescribed by the Hamiltonian

H0 (r,z;P ,P 1 (P2+P2 + 22 + r2 = E (1i
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We specify a canonical transformation to action-angle

variables

(r,z;P r,P z ) - (6r,ez;Jr,Jz)

using Hamilton's characteristic function W(r,z;J r,J z). W

is defined, to within an additive constant, by the relations

P = and Pz =  (12a)

r ar z T

From (11) it follows that W must solve the Hamilton-

Jacobi equation,

1i(aW 2 i/a (W\ 2 , 2  + 2
2(arl i2 az 2 r2 + - r = E (12b)

The dependence of W on the action variables (Jr ,J ) is given

by the defining relations

S1 £Pd r  1 faW
J 1 Pr = 1 'W dr , (12c)

and

J 1 2f Pdz = 3- dz , (12d)

where the integrals are over a complete period of r and z.

(We adopt the con.ention that H0 is periodic in z with

period 2r.) Notice that Jr 0 because the motion is bounded

in r. Once Eqs. (12b)-(12d) have been solved for W,

the angle variables (6r 0z ) are defined by

o a- and 6 - (12e)
r Jr z Jz
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W is called the generating function of the canonical trans-

formation given by Eqs. (12a) and (12e).

We easily find (cf. Appendix B) that

;jr z  / 2 2 2 ds+J ,

W(r,z;J ,j 2E - 2 - s- 2 ds +zr z f I2z

(13)

where

1 2 +2J +Z (14)E 2 z r

It follows from (14) that in the action-angle variables

the Hamiltonian is

K 0 (3,Jr 1 2 + 2 J + Q (15)

Since K0 is independent of 0r and Oz , both actions are

conserved:

J (t) = Jr (t=0) 7 Jr 0  (16a)

and

0J (t) = J (t=0) -J 0 , (16b)Z z Z

Therefore, Hamilton's equations for 0 and e

r = - 2 and .z J z

are trivial to integrate:

e (t) = 2t + 0 0 (16c)
r r

an (
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0 (t) = tJ + 0 (16d)

Using (13), Eqs. (12a), (12c), and (12d) are easily

solved for (r,z;Pr ,P z ) in terms of (6r '0z;J rJ) (cf.

Appendix B):

P J , (17a)

r = j8 + C 2 - cosr 12 r (17b)

and

_(6 2_£2) 112 (17c)r r

where a 7 2J + Z.r

It is convenient to think of the motion, Eqs. (16),

as taking place on a torus (cf. Fig. 2). For given initial

conditions, (6 r a Jr Jr0  ) the ion's trajectory subse-

0 0
quently will be confined to the torus with radii (Jr riz0H.

The two characteristic frequencies of this motion,

aK 0
w - 2 (18a)r 31J

and

_ 0  (18b)

z -J-- z'z

are constant on each trajectory. Clearly this motion

consists of simple harmonic oscillation in (r,Pr )-space

and uniform translation in (z,P z)-space.
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At this point we introduce a technique that will be

used in § III.B to study the trajectories of the full

Hamiltonian (8) numerically. We record the points of

intersection of a given trajectory with the plane Kz = 0

(mod 27T). This plane is our surface of section. For

definiteness, only those points with P> 0 will be recorded.

(Obviously, taking z equal to any constant would do for a

surface of section if c = 0, and the same pattern of inter-

sections would result no matter what constant we chose.

z = 0 is a good choice if c / 0 because this plane contains

all points of stable equilibrium; all of the trajectories

that we observed punctured this plane repeatedly as the

equations of motion were advanced in time numerically.)

In the case E = 0, we know from Eqs. (17b) and

(17c) that the points in the surface of section lie on

the curve

p 2 r 2  + (r2_ 2 = 2 - (19)
r

0 0corresponding to the ( r0,J z) torus determined by our

choice of initial conditions. Of course, in the toroidal

(6rz ;J r,J z)-representation any trajectory will puncture

the surface of section (KO, = 0, mod 2r) along a circle in

the (0 r ,J r-pane.

If there exist non-zero integers (m,n) such that

mwr + nwz = 0, where wr and w are defined by Eqs. (18),

then the motion is periodic, and the trajectory will intersect
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the surface of section in finitely many points. (The period

of the motion is the least common multiple of 2r/w r and

2T/WZ.) If, on the other hand, mwr + nwz = 0 implies that

n = m = 0, then the trajectory never intersects the surface

of section in the same point twice. The intersections fill

in the circle in the (0r Jr )-plane, and the curve (19) in

the (r,P r)-plane, densely as time increases without bound.

Such motion is called "conditionally periodic." On the

(JrJz) torus it is known3 that conditionally periodic

motion is ergodic: as time increases without bound, the

fraction of the total elapsed time spent by the phase point

in a small neighborhood of any point on the torus approaches

the fraction of the total area of the torus contained in

that small neighborhood.

We have seen that if E = 0 the ergodic motion is con-

fined to the surfaces of two-dimensional tori whose charac-

teristic frequencies (wr ,Wz) are not rationally related.

If E > 0 there may exist three-dimensional regions of phase

space in which the motion is ergodic and a third constant

of the motion does not exist. In this case, a single tra-

jectory would intersect the surface of section densely in a

region of finite area. For our purposes it is necessary to

determine whether or not such three-dimensional chaos exists

and the effect such behavior would have on our ability to

trap an ion in the potential wells of the wave.
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B. [ > 0: Resonant Island Overlap

If E > 0, there exist trajectories for which IKz(r)i

< i, and such motion is observed to be oscillatory in both

r and z. If the energy, E, is sufficiently large (E > k+c)

there also exist trajectories for which the motion is un-

bounded in z. Both types of trajectories are illustrated

in Figure 3. Notice that these trajectories puncture the

surface of section along simple closed curves that are in

fact very close to the curves given by Eq. (19). Thus,

these trajectories must lie on two-dimensional surfaces

embedded in phase space. We conclude that for these trajec-

tories there exists a third constant of the motion.

If E and E are held fixed and K is increased, some of

the simple closed curves of Figure 3a are distorted into

chains of islands, as shown in Figure 4. A single trajectory

generated the chain of two islands, while a different tra-

jectory generated the chain of three islands. Yet all

observed trajectories intersect the surface of section in

simple closed curves, so there still exists a third constant

of the motion for these trajectories. Both island chains

correspond to unbounded motion in z. Only those simple

curves nearest the energy curve (i.e., the outermost curve

in Figure 4, where all of the energy is in radial oscilla-

tions) correspond to bounded motion.

If now E and K are held fixed at the values they have

in Figure 4 and E is increased, the two-island chain is
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completely destroyed, as are the simple curves near the

energy curve. That is, there is an annular region between

the energy curve and the three-island chain (i.e.,

what remains of the three-island chain) that trajectories

puncture randomly. The annular region shown in Figure 5a

was generated by a single trajectory. Apparently, a third

constant of the motion does not exist in this region.

The corresponding motion in z (cf. Fig. 5b) vascillates

randomly between bounded oscillations in the potential wells

and unchecked flight over the crests of the wave. Obviously,

such behavior must be avoided if we are to trap the ion

in a potential well. Our main conclusion is

that motion such as that depicted in Figure 5

does not occur for C < E . Indeed, the parameters usedmax

to generate Figure 5 are not physical since they correspond

to C > C
max

We may attempt to understand the behavior depicted in

Figures 3 through 5 using perturbation techniques as follows.

Employing the canonical transformation given by Eqs.

(17), the ion Hamiltonian (8) becomes

K(Or,Oz;Jr,Jz) = K0(J rJZ)

- E E C(Jcos(ier-K6Z) cos(i rKZ) 20)

i=O r
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where K0 is given by Eq. (15),

2 Ti1 ~o 1/2
Ci(Jr) =- J J0 [p( + 4 c°Ser) ]cos(ier )dOr

(21)

and 0 E 2J + Z. Clearly C i H 1 so that from
r 1

Hamilton's equations,

* 3K * 3K_J _ aK and -J _
r a3r  z 3 z

we see that J and J are of order E; that is, J and Jr z r z

are conserved to zeroth order in the small parameter E.

(Jr and J are the actions of (8) only if E = 0.]

We specify a canonical transformation to new dynamical

variables,

(or,ez;Jr,J z )  ( r, z;jrljz) r

using a generating function, T:

T(Or az;jr'j z ) E rar + j0zz + ES(Or,Oz;j r j z

(22)

The transformation equations are given by4

S r r+ (23a)
r r

3T as4z t-- ez + C (23b)
z z az

a T as

Jr aor  3 r +  C -r ' (23c)

rl r
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and

Jz 3+ _ (23d)

Replacing the old variables with the new ones in (20) gives

us the transformed Hamiltonian, K':

3K0 a 3K0 3sK ~~~ ~ K 'i K( S)+E - + aj 7--
K'(Wr,,z~ r j = K0 (Jr'z + £ r z

I 3 r zr zF

E Ci(i r)(Cos("r KJrZ\) + cos(i"i +KI ) i
i=0

2
+ O(C ) . (24)

[Here we have used the Taylor expansion of K0 and are

treating S as a function of (r,z), correct to lowest

order in E.]

If the term proportional to E in (24) vanishes,

2then jr and jz are conserved to order c Furthermore, if

DS/30 does not become large, then Eqs. (23c) and
r,z

(23d) imply that jr and jz differ from Jr and Jz by

terms of order E. In other words, if we can find a suf-

ficiently smooth function S for which the term in brackets

in (24) vanishes, then the ion trajectories will lie on

surfaces that differ very little (-c) from the tori of

S III.A. Such trajectories would puncture the surface of

section along simple curves as in Figure 3a.



20

Equation (24) suggests that we take S to be of the

form

S(Or,0z;jr,j z ) A A,(Jr'Jz)sin(.Sr 4micz=0

Sre z ;jr 'iz A Z,m ir z )sn8r +Oz
m=±l (25)

Substituting (25) in (24) we easily discover a suitable

definition for Az,m:

z i CII 0 H iLA) ± KW I
ito ±Kn )z 1 r r z
r£( )

A£,±I = . (26)

0 otherwise

Here, ( r ) r j.)z ) (2,jz

In those regions of phase space where no denominator

(211Kj z) is small, we may expect the trajectories to lie

on surfaces similar to the tori of § III.A. In this case,

the motion is described by the Hamiltonian

K ( , ) 1 z  + 2j + k.
(r z) 2 ~r

Therefore, jr and j zare constants of the motion (up to

terms of order which we are neglecting). But, according
to Eqs. (23), Jr and J differ from jr and jz by sinusoidal

functions of 6r and 0z that are of order c. The trajectories

are therefore constrained to lie on surfaces in (0 ,0 ;J ,Jare (0r, z jrjz
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space resembling slightly rippled tori. Because these

rippled tori are topologically equivalent to the tori in the

case E = 0, they are said to La preserved by the transforma-

tion T. (Two surfaces are topologically equivalent if one

can be continuously deformed into the other.) A preserved

torus intersects the surface of section in a simple closed

curve. The curve is approximately described by Eq. (19),

up to sinusoidal wiggles which are imperceivable -n the

numerically generated surface of section plots shown in

Figure 3a.

Let

*zN i 2N/K , (27a)

and

SN (E - 2N 2 (27b)

K

We cannot expect the ion trajectories in regions of phase

N Nspace near (j r N ) to lie on surfaces closely resembling

N Ntori. Those tori corresponding to (j 'i ) (i.e.,

N=12 2 N
r = 1 [E-i-(2N / )] and = ± 2N/K) -re said to be

resonant under the transformation T. [Tori close enough

N N
to (Jr ,Jz ) to be strongly distorted by T are considered

to be resonant as well.]

Recall that Jr is by definition positive. Jr and jr

differ by terms of order c. Therefore jr must be positive,

up to terms of order C. Clearly, if
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2 2
K < E-Z

then there are no resonant tori (N 1 1) present. This result

depends only on the form of H0 in Eq. (11) and on the fact

that there is a single k on the beam.

Near the N-th resonance, AN,-1 = 0, according to Eq.

(26), and the motion is described approximately by the

Hamil tonian

K N( r , ;jr,j ) K r(J I z ) - C (Jr )COS(N4pr-K z) (28)

(Our conclusions do not depend on which sign is chosen for

jzN in (27a). We have taken the + sign for definiteness.)

From Hamilton's equations,

? 3KN

-Ir - ar = NcCNsin(Nr -K z)

and

-J z = z = -KEC sin(N -Kz)3z F N r z

it is clear that

N Kj + Nj (29)
r z

Nis a constant of the motion for Hamiltonian K .Let

Jr = Jr + 6jr

eliminate jz from Eq. (28) usinq (29) and set az = 0
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to see how resonant tori intersect the surface of section.

Solving Eq. (28) for 6jr we find that

6j (E - 2 N- -

- - -(1, + -- + 2CN( ) COS (N 1/2

K KI K 2 CN/r rj

(30a)

(Vie have neglected the dependence of CN on 6jr and have set

NK = E to get this approximate result.)

For given IN the radicand in Eq. (30a) may be positive

only for values of 'r in one of N intervals between 0 and

2,. The corresponding resonant torus would intersect the

surtace of section in a chain of N islands as in Figure 4.

Since we have kept only terms of order c in K , the islands

are called "first order resonant islands." (Higher order

perturbation techniques would reveal chains of much smaller

second order resonant islands surrounding the first order

chains, etc.) If the radicand is positive for all Wr' the

corresponding torus is not resonant but is only rippled by

the transformation T, in accord with the description of

preserved tori given above. Between the preserved and

resonant tori there is a separatrix given by Eq. (30a) when

IN is chosen so that

E 2N 2
E_ -2 + 2N EICN( j N 0bS+ 2KI (30b)

K
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Since in this case

rj E 1CN(j N [ 2EC N), (*coNN )11/2
Jr = - -2 N r K -- 2 CN(Jr )I( oN r )

we see that the maximum island width is

W 4NL C£ C(jrN H]1/ (31)
WN K (3

If the motion can be described to order E by either

NK0 or by K , for some N, then in all of phase space there

exists an approximate third constant of the motion which,

we observe, keeps the ion from escaping from a potential

well once it is trapped. If, however, there are regions of

phase space in which two or more denominators (2N±Kj z) are

simultaneously small this may not be the case.

5
It is well known that for conservative dynamical

systems of two degrees of freedom the motion is ergodic in

those three-dimensional regions of phase space where

resonant island overlap occurs. For our purposes it is

sufficient to determine whether or not the motion is

observably ergodic due to the overlapping of first order

resonant islands. Resonant island overlap occurs approxi-

mately when the distance between two resonant tori is less

than the sum of the half-widths of the corresponding island

chains. That is, when

N N+1 < 1 (WN + wN+) ,
r- r (32)

we should expect trajectories to puncture the surface of
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section chaotically in a roughly annular neighborhood of

N N+1
j r and J r Using Eqs. (27b) and (31) we obtain

from (32) the resonant islant overlap criterion:

2N+1 < 2NK CICN(j N)i + 2(N+I)K[ C CN+(jrN+l)1

(33)

This is, of course, an approximate condition.

It is interesting to notice that if £ = 0, CN is zero

if N is odd, and

m )m~m2 ( m)/2 }

C2mJr = (-m[i P r) , m = 0,1,2 ...

where now

m E 2m2

r K2

and J is the Bessel function of the first kind of orderm

m. (See Appendix C for a discussion of the case Z = 0.)

Thus, the m-th resonant torus intersects the surface of

section in a chain of 2m islands. The overlap criterion

corresponding to (33) is

2m+l < 2mKE/2tJm[p(2 jrm)/ 2 11

+ 2(M+1)KE 1/2 1mi[( -ml)/ (34)

and it is easy to see that this inequality cannot be

satisfied if E < £ unless m = 0. This corresponds tomax
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overlap of the 2-island chain and the energy curve in the

surface of section. This overlap and the chaotic motion it

engenders are shown in Figure 6 for c > c max* (We took a

large, forbidden value of c to produce apparent chaotic

behavior.)

If Z > 0, our numerical calculations reveal no resonant

island overlap for N 2 1 and c < c ma x  Presumably this is

because the overlap criterion (33) cannot be satisfied.

The only observed chaotic behavior for E < cma .results

from overlap of the energy curve and the 1-island chain.

This overlap and the chaotic motion it produces are shown

in Figure 7 for C > C . (Of course it is possible thatmax

this chaos is a product of the overlap of higher-order,

smaller resonant islands whose theoretical origins we have

ignored in our first order perturbation analysis and whose

existence we were not able to document numerically. Never-

theless, the observed chaos appears to result from overlap

of the 1-island chain and the energy curve.)

All N-island chains (N . 1) are observed to be produced

by motion that is unbounded in z if c < e max* We may under-

stand this observation as follows. Using the constant of

the motion, Eq. (29) to eliminate jr from the resonant

Hamiltonian, Eq. (28) we find that on the separatrix,

Eq. (30b),

]N ) 1 ± cos(N -K ) 2-2N ± 2£LN(Jr Z
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Thus, the most negative value of j in the N-island chainz
is approximately

2N _ 2[CN Nr) 12

which cannot be less than zero if c < Cmax and N 1 because

CN  1. Because Lhe energy curve is a resonance of no

width, the 1-island chain must get very close to it to

produce chaotic behavior. But then there are few, if any,

bounded trajectories left to protect. (Obviously, the

energy curve itself cannot be destroyed by overlap.) Thus,

the Hamiltonian (8) manifests no chaotic behavior that

would discourage attempts to trap the ion and keep it

trapped.

IV. CONCLUSIONS

We have considered the motion of an

ion in an electrostatic wave on a cold, uniform electron

beam. We find that if the amplitude of the wave, E, is

insufficient to trap beam electrons then there exists a

third constant of the ion motion, in addition to the angular

momentum and total energy. This third constant of the motion

constrains the ion trajectories to lie on two-dimensional

tori embedded in the four-dimensional ion phase space. The

motion on these tori may be either periodic or doubly
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periodic. If E exceeds the critical value for wave break-

ing, the ion motion is observed to be chaotic in certain

three-dimensional regions of phase space where resonant

tori overlap and a third constant of the motion does not

exist. Were this chaotic behavior physical (i.e., if the

wave were not broken) it would undermine attempts to trap

and accelerate the ion in the potential wells of the space

charge wave. However, if C is less than the critical value

for wave breaking, the existence of the third constant of

the motion throughout all of phase space ensures that radial

oscillational energy cannot be converted to axial transla-

tional energy so as to liberate an ion initially trapped in

the potential wells of the wave.
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APPENDIX A

:nagnetic Field Effects on the Ion Motion

Since we have assumed that a uniform axial magnetic

field, B = B e , constrains the electrons to move only paral-
0 Z

lel to the z-axis, we must include the effects of this field

on the ion motion. We do so using the vector potential,

A(r) B r e
0

such that B = VxA. Including this vector potential, the ion

Hamiltonian analogous to (8) is: 6

r 1 ( + 1 p  Ze )
H(r,z;P ,P (P+__-

H~';r'Pz) rm 7 2mi r c 0o

+ Zet e (r,z)

Here c is the speed of light in vacuo and (P ,P ,P ) are ther z

canonical momenta conjugate to (r,z,), respectively:

P 3 m.r, P = m.z , and
r 1 z

2. Ze 2

P 3m.ra+- r
1 c o

Because the Hamiltonian is independent of a, P is a con-

stant of the motion.

Introducing the ion cyclotron frequency,

'c ZeBo/mic
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and a frequency *"o

2 2 Z ,"p2m 2mi
o c e

2  2
we divide H b m~a 0 and make the following substitutions:

r -/ /a , z z/a

Pr - p /(m .. oa) , Pz * P0/(mi i  a)

and

t 0 (U t0

Under this change of variables, the dimensionless Hamiltonian

is

1 2 1 2 R2 1 2
H(r,z;P r, z 2 r 2 z 2 2

- cJo(pr)cos(Kz) - 6
0

where

92 p 2 /(mi 2a 4  2
at 1 0

22
ZeW/(mia 0)

and

Q p a/(mia2 0 2)

Since this Hamiltonian and (8) differ only by the added

constant 6, the motions they generate are qualitatively

identical.
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Using the dispersion relation (4) we may rewrite

e / (m v 2

2 2 2 , 2

where v isi z'hs". volocity of thu wave in the beaxfr'-;
P 

I

In order that the wave not break, the numerator must b. less

than 1 , or:

S2 2 ") 2 -1[p-+. -ma "c/ (Zt~me v -)

) ' _)

This upper bcund on is even smaller than c-max [P-+--]

used to bound when the magnetic field is neglected.

Therefore: if wave amplitudes that are too small to tra I) bOa.

electrons are tv:o small to foil attempts to trap and accele--

ate an ion whnn the effects of the magnetic field on

the ion motion are neglected, then (because the respective

Hamiltonians are of the same form) the same is true when te

effects of the magnetic field are included in the ion dynamics.
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APPENDIX B

Action-Angle Variables

We assume a solution of the Hamilton-Jacobi equation,

GOw2 i (_ )2 ,1 2 Z
2 z + z r + 2r

of the form

W(r,z) = Wl(r) + W 2 (z)

It follows that dW 2/dz a constant Jz' say. Notice that

2 27
1f 'YWd

Jz 2 T Z dz
0

in agreement with the definition of action, Eq. (12d).

The action in the (r,Pr )-plane is

- W- - (2E _(2E2- - r2 -Z2)1/2 dr

111

where we must take the plus sign for increasing r and the

minus sign for decreasing r. It is convenient to rewrite

the action integral (BI) as

2 2 2 - 2 1/2

(r22 )~~ ~)I dz (B2)
r C 1 2  2

C12 Z
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and to evaluate this inteqral in the complex plane. The

integrand 1-I(z)] in (B2) is singular at the origin and at

the point at infinity. There are four branch points: +r1 ,2 .

We choose one branch cut between r1 and r2 and another

between -r 1 and -r 2' both along the real axis. The action

is given by the integral along the contour C1 2, as shown in

Figure 8, where the integrand is taken to be positive

above the cut and (therefore) negative below. Deforming

the contour C1 2 around the origin, the point at infinity,

and the cut between --r, and -r, we find that

2I(z z f Ii/ dz (B3)
_J = I I(z)dz + I(/z (2

r  2 T2CO CO0 z

Here we. have us.ed the fact that the integral around Ci2 i5

equal to -Jr and have transformed the integral around the

point at infinity to one around the origin using the sub-

stitution, z - I/z. In evaluating both integrals in (B3)

we take care to choose the signs of I(z) and I(l/z) con-

sistent with the choice in (B2). We find that the residue

at z = 0 of I(z) is it(k > 0). The residue of I(1/z)/z 2

at z = 0 is -i(E j 2 Applying the residue theorem,a z

we find that

2J = -£ + E - J

that is,
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1 2 + 2j + k (B4)Z r

7o determine the old variables (r,z; P r,P in terms

of the new variables (6r 'er ;J r z) we first note that

W 2 (z) = zJz + a constant, which we take to be zero.

Therefore

r (4J+2 2 2 )1/2

W(r,z) = zJz  r 4J+2Z -r' 2  2 2 dr'

where we have used (B4 ). Two of the transformation

equations,

z and Pz - '
z

are trivial to solve:

0 =z and P J

z z z

We also have

r

SW 2dr /2 (B5)r Jr [4J r+2Z-r ' _( /r' )]

Changing the variable of integration in (BS) from r' to ,

where

--2

and a 2Jr +, we find that
r = Z 2- ) 1/2 1/2

f~( i) cost) r ] (B6)



35

Finally, substituting this expression into the Hamiltonian,

Eq. (11), we find that

2 (62 - 2 )sin 2  
BrP r r B7)

Because P is positive for increasing r and negative forr

decreasing r, we must take

[sin 2e r1/2 -ine r

as in Eq. (17c), if r is given by (B6).
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APPENDIX C

The Case i = 0

In the case = 0, we do not obtain correct expressions

by setting Z = 0 in (B4) through (B7). This is because the

action integral, Eq. (Bi), is discontinuous in k at i = 0.

The integral is, however, elementary in this case, and we

easily find that

1 2Jr = 2 1z

Proceeding as before, it is now straightforward to show

that the canonical transformation to action-angle variables

is given by the following equations:

z= , P = J
Z z

r = /? cosO Pr =

S rr sinr

In this case, the N-th Fourier-cosine coefficient in the

expansion of J0 (pr) is

12- J0 (p/. cose )cosN0 dO
Tf 0r r r

0

Therefore, in the notation of Eq. (20),

21n

CN(0J) f J O0 P/23 r cos )cosN0 rdOr

0
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if Z~ = 0. It is easy to see that C N =0 if N is odd. if

7
N is even,

C (j) = (-1) 3 (p v/), m = 0,1,2, ...
2m r rn r

Therefore, in action-angle variables, the Hamiltonian (8)

is

~ 0z1 j~ 1 2 +

L E. C2m(J) !cos(2TOr -K OZ) + cos (2m6r + ice)j

The resonant tori, analagous to Eqs. (27a) and (27b)

are found at

*m =
Jz +2m/,c

and

m ~2m 2

)r E----

but now these tori intersect the surface of section in chain,'-

of 2m islands. We fir.2 that the m-th chain will overlap

the m+l-st chain if
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2m+1 < 2m [LIC 2 m(jr') i1 1/2

+ 2(m+l)K[EIC 2 ( ) (JrM )1 1/2

which is expression (34) in the text.
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FIGURE CAPTIONS

FIG. 1. The cylindrical coordinate system used to analyze

the ion trajectories.

FIG. 2. The toroidal representation of the ion phase

space. (J < IJ z is assumed.)r z

FIG. 3. Ion trajectories unaffected by nonlinear

resonances. (a): Intersections of the surface of section

by ion trajectories that are (A) bounded in z and (B) un-

bounded in z. No nonlinear resonances are present. E = 0.6,

= 0.1, K = 1.0, _ = 0.02. (b): Kz as a function of the

time t for trajectories (A) and (B) of Fig. 3(a). (c): r

as a function of the time t for trajectories (A) and (B) of

Fig. 3(a).

FIG. 4. Intersections of the surface of section by ion

trajectories on strongly distorted, resonant tori. (A) is

the energy curve, (B) is a chain of two islands, and (C) is

a chain of three islands. E = 0.6, Z = 0.1, K = 7.0,

= 0.02, c m 0.018.max
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FIG. 5. Ion trajectcries strongly affected by resonant

island overlap. (a): Intersections of the surface of

section by two ion trajectories. One trajectory produced

the chain of three islands; another trajectory produced the

stippled region. E = 0.6, Z = 0.1, < = 7.0, c = 0.1,

0.018. (b): Kz as a function of the time t for the

ion trajectory that produced the stippled region in Fig.

5(a).

FIG. 6. Intersections of the surface of section by several

ion trajectories, in the case Z = 0, when the two-island

chain (B) overlaps the energy curve (A). The stippled

region was produced by a single trajectory. E = 0.6,

Z = 0, K = 5.0, c = 0.1, cmax 0.0324.

.,G. 7. Intersections of the surface of section by several

trajectories when the one-island chain (B) overlaps the

energy curve (A). The stippled region was produced by a

single trajectory. E = 0.65, Z = 0.1, K = 5.0, £ = 0.1,

E 0.0324.max

FIG. 8. Contours in the complex plane used to find the

action, Jr"
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This computer simulation differs from the Type III driven

problem in using a larger amplitude pump, and smaller wave-

number pump:

W = 5x10
4

k 0 X 0.005Qe

This is a new parameter regime (W > 10 k0 2 X 
2 ) for which wave-

packets are expected to be unstable to short wavelength per-

turbations, and break-up may precede collapse.

We are motivated by Benford's experiment, [or which

Wpe = 1.8x10 I (n 0  1013

6 = 0. = 10 eV
e

_-L = 0.03 (W - 1)
pe

AK Ak

X 0 ' k 0  4

ce 0.01
"IT
pe

k0 Xe = 0.005

Our work uses a broadband, initial value pump (no beam growth

rate), E0 = 0.283 (W = 5x10-4 ); 64x64 grid of length



and maximum growth at k =E0 or kLX 0.006. In this

1

problem, wavepacket dimension is 211/Ak = 2i/ k0  5000 X

The instability wavelength is 2r/0.006 = 1000 X e

II. Computer simulation, w ce= 0 (Figures 2 through 8).

Shows modulational instability and collapse.

III. Computer simulation, w = 0.033 wce pe

(Figures 9 through 15),

From J. C. Weatheral's thesis, a sufficient condition

for a magnetic field to alter collapse is

Ak 12 (1 e2 >
2 24

3k w
o pe

-5 -5
2.6xlO - 2.lxlO

The condition for the magnetic field to affect parametric

instability is

L ce > v/- k
k w pe k De

1 (0.033) > V ; (0.,306)

0.018 > 0.010



L = 10,000 Xe" Pump modes consist of a box in k-space of
1

six modes, Ak 2,k k 40 (Dimensionless units are as
I H k0.

in Nicholson, et al., 1978.) We observe modulational

breakup and collapse. With a magnetic field of wce .035

ape' collapse is cnhanced, not innibited.

I. The behavior of parametric inCtability for k0 = 0.005

kD is shown in Figure 1.

As W become- large with respect to k0 (W > i0 k0 2 A '

the wave is unstable to a modulational (OTS) instability.

The counter-streaming waves produced by these instabilities

will break up wavepackets into smaller packets.

We can estimate size of perturbation from dispersion

relation (Dwight Nicholson, Private Communication, January

1981)

2U - iwv + k 2 = -k 2 2
l 0

k k2  Ve k2

2

assuming I1w <' k2, k << k 2 iy (purely growing). Tha,

growth rate is tound to be

- + /2E0k k

2 0
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We conclude that this magnetic field will not strongly

affect collapse. It may have i stronger affect on

instability.

The modulational breakup is faster with a magnetic

field (because instability has smaller bandwidth transverse

to the field?), and collapse is enhanced, for example, at

-TT = 72 (T 1 corresponds to 1377 .j )
Pe



FIGURE 2

ELECTRIC FIELD AMPLITUDE IN K SPACE T= 6.00
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FIGURE 3

ELECTRIC FIELD IN RERL SPiCE RT Tz 6.00
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ELECTRIC FIELD IN REAL SPACE AT T= 60.00
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FIGURE 5

ELECTRIC FIELD IN REAL SPRCE RT T: 72.00
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FIGURE 6

ELECTRIC FIELD IN REAL SPACE AT T= 96.00
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FIGURE 7

ELECTRIC FIELD IN REAL SPRCE PT T= 120.00
11 I I I I I I I I 11 111 I I I I I i I 1 1 1 1 1 1 1 I I I I I I I I

Il

CJIJIIIIIIJ IIIIJJIIIIIJI& IIIIIPI %'A.



FIGURE

ELECTRIC FIELD AMPLITUDE IN K SPACE Tz 96.00
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FIGURE 9

ELECTRIC FIELD IN REAL SPACE AT T= 36.00
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FIGURE 10

2-;-C- .C P IELD IN' RPIPL 5PACE AT Tm 8.00
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FIGURE 12

ELECTRIC FIELD IN REAL SPACE AT T= 72.00
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FIGURE 13

ELECTRIC FIELD IN REAL 5PACE AT T= 96.00
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PIGURE 15

tLECTRIC FIELD AMPLITUDE IN K~ SPPCE T= 96.00
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